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Spike propagation in chain networks is usually studied in the synfire regime, in which successive groups of
neurons are synaptically activated sequentially through the unidirectional excitatory connections. Here we
study the dynamics of chain networks with dominant global feedback inhibition that prevents the synfire
activity. Neural activity is driven by suprathreshold external inputs. We analytically and numerically demon-
strate that spike propagation along the chain is a unique dynamical attractor in a wide parameter regime. The
strong inhibition permits a robust winner-take-all propagation in the case of multiple chains competing via the
inhibition.
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Synfire chain activity, in which synchronous spikes propa-
gate along a chain of successive groups of neurons connected
unidirectionally via excitatory synaptic connections �1�, has
been extensively studied �2� and suggested as the underlying
mechanism for precisely timed sequential firings of neurons
observed in a number of neural systems, including songbirds
�3–5�, cortical activity �6�, and primate motor cortex �7�.
Synfire activity requires the excitation be in a restricted re-
gime: the excitation must be strong enough for the synaptic
activity to evoke spikes in subsequent groups of neurons, but
weak enough to avoid runaway instability �4,8�.

In this paper, we demonstrate that precisely timed spike
propagation in chain networks can be robustly established
beyond the synfire regime. Instead of the synaptic activation,
neural activity is sustained by suprathreshold external inputs.
The activity is controlled by a strong global feedback inhi-
bition and shaped by the unidirectional excitatory connec-
tions between the groups. The inhibition dominates the exci-
tation and the synfire activity is suppressed. We show that
spike propagation is a unique attractor to which the dynamics
flows from all initial conditions when the external inputs are
on. This mechanism is robust, with a large working param-
eter regime for the excitation and inhibition strengths. The
strong inhibition also permits a robust winner-take-all selec-
tion of a single chain for spikes to propagate when there are
multiple chains competing for the activity, which could be a
mechanism for action selection if each chain encodes an ac-
tion element such as a song syllable in songbirds �4,5�.

Our results in the “driven-chain” regime are obtained
through analytical analysis and numerical simulations of
chain networks of leaky integrate-and-fire neurons. The ana-
lytical analysis is aided with three simplifications: the groups
of neurons are replaced by single neurons, the global inhibi-
tion is modeled with all-to-all inhibitory connections be-
tween the neurons, and the synaptic interactions are approxi-
mated as pulse coupling. We prove that sequential spiking
along the chain with precise timings is the unique global
attractor in a wide parameter regime of the excitation and
inhibition; furthermore, in the same parameter regime, the

spike propagation selects a single chain if multiple chains
compete. The analytical results are confirmed numerically
with the simplifications removed and noise added.

Many models of biological and physical systems includ-
ing heart cells, fireflies, earthquakes, and neural networks
belong to a broad class of models consisting of systems of
pulse-coupled oscillators �9–11�; our simplified neural net-
work model fits into this class as well. Our analytical analy-
sis should add insights into the relationship between the
structure of coupling and the dynamics, a key for under-
standing these diverse systems. Sequential spiking in chains
of pulse-coupled oscillating single neurons has been investi-
gated before �12–14� and it has been shown that spike se-
quences are stable in generic inhibition-dominant networks
�15�. However, these works do not show that the dynamics of
a given network is attracted to a unique spike sequence at-
tractor regardless of the initial conditions. A unique attractor
is robust against perturbations and noise since the basin of
attraction is large. This is an important characteristic if the
pattern drives a single motor action such as a song syllable
�3,4�. Our analysis establishes that the spike propagation in
chain networks in the driven-chain regime is a unique stable
attractor to which the dynamics converges from all initial
conditions.

The dynamics of the neurons in the simplified model is as
follows:

�
dVj�t�

dt
= ER + I − Vj�t� + Is, �1�

where Is is the synaptic current and is given by

Is = �
n=1

�

�− GE
j,snVj�t� + GI�EI − Vj�t������t − tn� . �2�

Here � is the membrane time constant; Vj�t� is the membrane
potential of neuron j; ER and EI are the resting membrane
potential and the reversal potential of the inhibitory synapse,
respectively �the reversal potential of the excitatory synapse
is 0�; I is the constant external input; GE

j,i is the excitatory
conductance from neuron i to neuron j, which is GE�0 if
j= i+1 is the neuron next to neuron i down the chain and 0
otherwise; GI�0 is the global inhibitory conductance be-*djin@phys.psu.edu
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tween all neurons; sn is the index of the nth spiking neuron in
the network; and tn is the spike time of neuron sn. All con-
ductances are scaled with the leak conductance of the neu-
ron. A neuron spikes when the membrane potential reaches a
threshold �. After a spike, the membrane potential is reset to
the reset potential VR and all neurons are excited or inhibited
immediately. There are three restrictions: �1� EI
�ER ,VR ,Vj�t����0; �2� only one neuron can spike at a
time and neurons do not spike immediately after receiving an
excitation, which leads to GI�GE� / �EI−�� �see �15��; �3� I
is strong enough to make an isolated neuron spike.

In between two consecutive spikes in the network, neu-
rons are uncoupled and their membrane potentials increase
due to the external inputs. Since the neuron properties and
external drives are homogeneous, the neuron with the highest
membrane potential after the last spike will spike first, win-
ning the “race-to-spike.” The spike is transmitted to all neu-
rons via the global inhibition, reducing their membrane po-
tentials; it is also delivered to the neuron next to the spiked
neuron down the chain via the excitatory connection, in-
creasing its membrane potential and counteracting the inhi-
bition. The spiked neuron’s membrane potential is reset and
further reduced by the inhibition. After the spike, the race-
to-spike resumes.

This process can be expressed mathematically with the
pseudo-spike-time mapping, as shown in �15�. Equation �1�
can be integrated in between two consecutive spikes of the
network; the jumps of the membrane potentials right after a
spike can be computed by integrating over the � functions
�15�. A key to the race-to-spike is the time for an isolated
neuron to spike starting from a membrane potential V, which
is captured with the pseudo-spike-time factor �PSTF� as

��V� � �ER + I − V�/�ER + I − �� . �3�

An uncoupled neuron will spike after a time � ln ��V�. By
integrating Eq. �1�, the membrane potentials of all neurons
right after the nth spike, denoted as Vj

�n�+, can be mapped into
those right after the next spike, Vj

�n+1�+. Equivalently, this
mapping can be expressed in terms the PSTF’s right after the
spikes. Denote the PSTF of neuron j right after the nth spike
as � j

�n�+���Vj
�n�+�. The neuron that wins the race-to-spike,

whose ID is sn+1, has the smallest PSTF, or

sn+1 = arg min
j

� j
�n�+. �4�

The mapping for the chain network is

� j
�n+1�+ = 		I�R + 
I if j = sn+1,

	EI� j
�n�+/�sn+1

�n�+ + 
EI if j = sn+1 + 1,

	I� j
�n�+/�sn+1

�n�+ + 
I otherwise.

 �5�

Here 	I=e−GI; 	EI=e−GI−GE; 
I= �1−	I��I; 
EI= �1
−	EI���EEI�, where EEI=EIGI / �GE+GI� and �R=��VR�. The
three cases of j correspond to the spiked neuron, the excited
neuron, and the inhibited neuron.

A solution of the mapping is spike propagation along the
chain, i.e., sn+m=sn+m. It is a translation invariant solution
obtained by setting in Eq. �5� �sn+1

�n�+ =�sn+2
�n+1�+ �the PSTF’s of

the excited neurons� and � j
�n�+=� j

�n+1�+ if j�sn+2 �the

PSTF’s of purely inhibited neurons�. Neurons spike at pre-
cise times. The stability of this solution can be easily shown
using the results in �15�. We now aim to prove that the spike
propagation is the unique global attractor in a wide param-
eter regime.

A simple case is when both the excitation and inhibition
are strong. Right after the first spike in the network, the
membrane potential of the neuron next to the spiked neuron,
which receives excitation in addition to the inhibition, is
higher than those of all other neurons, which receive only
inhibition, regardless of their membrane potentials right be-
fore the spike. In other words, �s1+1

�2�+ �� j
�2�+ for all j�s1+1.

Therefore the excited neuron spikes next, i.e., s2=s1+1. This
establishes the spike propagation from any initial condition
after the first spike in the network. The precise condition for
this case is

	I + 
I � 	EI�I + 
EI, �6�

where �I���EI�. The PSTF’s approach the translation in-
variant solution exponentially with the number of spikes.
This regime, in which both GE and GI are large, is shown in
Fig. 1.

A larger regime, in which it could take more than one
transient spike to establish spike propagation, is given by

�max
− − �R � �ma. �7�

Here �max
− is the upper limit of the PSTF right before each

spike and �ma= �	I+
I−	EI−
EI� /	EI. The proof of this
statement is given in Appendix A. To find �max

− , we define
the PSTF right before the nth spike as � j

�n�−���Vj
�n�−�, where

Vj
�n�− is the membrane potential of neuron j right before the

nth spike. Iterating � j
�n+1�−max��	I�R+
I� /�sn+1

�n�+ , �	I� j
�n�−

+
I� /�sn+1

�n�+��max��	I�R+
I� / �	EI+
EI� , �	I� j
�n�−+
I� / �	EI

+
EI�� with an initial condition � j
�1�−��I and taking n→�,

we find a reasonable estimate of �max
− as max��	I�R

+
I� / �	EI+
EI� ,
I / �	EI+
EI−	I��. With this and Eq. �7�, we
find the regime in the GI−GE space in which the spike
propagation along the chain is the unique stable spike se-
quence attractor, as shown in Fig. 1. The condition covers
most area of the permitted region on GI−GE space, except a
very narrow area below the boundary of permitted region.
The remaining part is not yet explored.

The condition of spike propagation in an infinitely long

G I

G
E

0 0.5 1 1.50

0.2

0.4 Runaway region
G I

G I + G E
E I > Θ εI + ψI ≥ εEI Γ I + ψEI

Γ −
max − Γ R < ∆ ma

FIG. 1. Phase diagram of spike propagation in an infinitely long
chain in the simplified model. In the gray region, spike propagation
is the unique spike sequence attractor. The upper right region above
the dashed line, computed from Eq. �6�, is where the number of the
transient spikes is 1. The lower left dashed line is computed from
Eq. �7�. Parameters: ER=−70 mV, EI=−75 mV, VR=−64 mV, �
=−54 mV, �=40 ms.
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chain, Eqs. �6� and �7�, also guarantees a winner-take-all
propagation of spikes when the excitatory connections form
multiple infinitely long chains coupled only through the glo-
bal inhibition. The mutual inhibition between the chains
drives the activity into a single chain propagation after some
transient spikes. The selection of the winning chain is deter-
mined by the initial condition. This can be proved with the
same technique as for showing that spike propagation must
be established in a single chain; the details are in Appendix
B. A simple way of understanding this is to think of the
multiple chains as parts of an infinitely long chain; the
winner-take-all selection is related to the fact that it is im-
possible to stably propagate spikes simultaneously in mul-
tiple regions of the single chain.

To show that the analytical results are valid in realistic
settings with noise and without the simplifications, we simu-
late a network consisting of 2400 excitatory neurons and
1000 inhibitory neurons. The excitatory neurons are con-
nected into two chain networks consisting of groups of 60
neurons linked into a branched loop pattern �Fig. 2�a��. A
neuron connects to all neurons in the next group with con-
ductance GE. The global feedback inhibition is setup by con-
necting an excitatory neuron to an inhibitory neuron with a
probability 0.5 and conductance randomly selected from 0 to
0.1, and connecting an inhibitory neuron to an excitatory
neuron with a probability 0.5 and conductance randomly se-
lected from 0 to GI. The excitatory neurons are modeled as
leaky integrate-and-fire neurons described by Eq. �1�, except

that the synaptic current is no longer pulse coupled but has
dynamics: Is=−gE�t�Vj�t�+gI�t��EI−Vi�t��. The synaptic con-
ductance gE�t� on an excitatory neuron obeys a kick-and-
decay dynamics: in between spikes it follows �EdgE�t� /dt=
−gE�t�, where �E=5 ms is the synaptic time constant; when
an excitatory spike arrives, gE�t�→gE�t�+GE. The inhibitory
conductance gI�t� on an excitatory neuron and the excitatory
conductance on an inhibitory neuron are similarly modeled
with the synaptic time constants being 5 ms and 1 ms, re-
spectively. Noisy fluctuations of membrane potentials are in-
duced by subjecting the neurons to random spikes such that
the inhibitory neurons spontaneously spike with an average
frequency of 1 Hz and the membrane potentials of the exci-
tatory neurons fluctuate with a standard deviation of about 2
mV.

In Fig. 2�b�, we show a typical run of the dynamics for the
case of GE=0.1 and GI=0.2. After a short period of transient
spikes, spike propagation spontaneously emerges in one of
the chains. The excitatory neurons in the same group spike
synchronously; so do the inhibitory neurons. When the ac-
tivity arrives at the branching points, neurons in both chains
are excited. After short transients, spike propagation contin-
ues on one randomly selected chain, exhibiting the winner-
take-all behavior. The working parameter regime, as shown
in Fig. 2�c�, is similar to that of the simplified model �Fig. 1�,
except when the excitation is small, which makes the spike
propagation easily disrupted by the random spikes of the
inhibitory neurons. We have tested that the synfire activity is
not supported in the regime due to the strong inhibition. In-
deed, the synfire activity in our networks requires fine tuning
of the parameters and is prone to runaway excitation or
propagation extinction.

The driven-chain activity is most robust when the connec-
tion strengths between the groups are uniform, the external
inputs are homogeneous, and the delay in inhibition intro-
duced by the inhibitory neurons is small, since this case is
the closest to the simplified model. Increasing disorders in
the connection strengths or inhomogeneity of the external
inputs or noise levels tends to reduce the parameter regime;
nonetheless, spike propagation can be robustly established
when both excitation and inhibition are strong. The delay of
the inhibition tends to make several nearby groups spike syn-
chronously, especially when the external inputs are large and
the inhibition is strong, creating effective neuron groups that
are larger than the group size specified in the network con-
nectivity. Delays in spike transmissions can significantly
change the dynamics of spiking neural networks �16�. It will
be interesting to investigate in detail how the delays and
heterogeneity of neuron and network properties affect the
driven chain activity.

The winner-take-all propagation when there are multiple
chains is robust in the driven-chain regime. In contrast, such
a competition in the synfire regimes requires delicate balanc-
ing of excitation and inhibition: strong inhibition tends to
stop the spike propagation, while weak inhibition cannot
suppress simultaneous spike propagations in multiple chains.
Although simultaneous propagation can be useful in some
settings �17�, it is undesirable if the chains encode mutually
exclusive action elements such as syllables in birdsong �4�.
Connecting the chains in branched patterns �Fig. 2�a�� en-
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FIG. 2. �a� Schematic diagram of the network. Arrows indicate
excitatory connections. Inhibitory neurons are not shown. �b� Spike
activity of neurons in the chains �a,b� and the inhibitory neurons �i�.
Here GE=0.1, GI=0.2, I=100 mV. All other parameters are the
same as in Fig. 1. �c� Phase diagram constructed based on simula-
tions with GI and GE at the grid points.
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ables probabilistic selection of a chain for the propagation to
continue from a previous chain, which can be a mechanism
for variable syllable sequences observed in many songbird
species �18�.

In conclusion, we have shown that spike propagation is a
robust dynamical attractor in chain networks with dominant
feedback inhibition. This regime is distinctive from the syn-
fire regime and permits a robust winner-take-all propagation
when there are multiple chains competing through the inhi-
bition.
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APPENDIX A

Here we prove that Eq. �7� is a sufficient condition for the
spike propagation along the chain to establish within a finite
number of transient spikes from all initial conditions.

Four lemmas are useful.
Lemma 1. If �i

�n�−−� j
�n�−��ma, and neuron i receives ex-

citation but neuron j does not, then �i
�n�+�� j

�n�+. The proof is
straightforward. The lemma describes a sufficient condition
for the excited neuron to have a priority to spike over a
purely inhibited neuron.

Lemma 2. If right before the nth spike �i
�n�−−� j

�n�−��ma
and, for the next m spikes, neuron j receives only inhibition
and both neurons do not spike, then �i

�n+m�−−� j
�n+m�−��ma.

Proof. Case 1: Both neurons are only inhibited. According
to Eq. �5�, �i

�n+1�−−� j
�n+1�−=

	I

�sn+1
�n�+ ��i

�n�−−� j
�n�−�. Since �sn+1

�n�+

�	EI�sn+1

�n�−+
EI�	EI+
EI, we have 0�	I /�sn+1

�n�+��, where
��	I / �	EI+
EI��1. Therefore �i

�n+1�−−� j
�n+1�−���ma

��ma. Iteration leads to �i
�n+m�−−� j

�n+m�−��m�ma��ma.
Case 2: Neuron i is excited any number of times during the
period. The excitations only lower the PSTF of neuron i
compared to case 1. Hence the statement of the lemma holds.

An additional lemma can be derived from the above
proof:

Lemma 3. If both neurons i and j are inhibited m times
from the nth to �n+m−1�th spikes and they do not spike, the
difference between their PSTF’s right before the spikes de-
cay according to ��i

�n+m�−−� j
�n+m�−���m��i

�n�−−� j
�n�−���m��I

−1�. Let N1 be an integer such that �N1��I−1���ma. After
N1 consecutive spikes, the PSTF’s of all neurons not spiked
and not excited during the span differ by less than �ma.

Using lemmas 1 to 3, we can prove the following state-
ment:

Lemma 4. Given the condition in Eq. �7�, a spiked neuron
cannot spike again unless it is excited.

Proof. Suppose that neuron i emits the nth spike. Its PSTF
right after the reset and before the global inhibition is �R.
According to Eq. �7�, � j

�n�−−�R��max
− −�R��ma for any j

� i. Suppose that neuron i is only inhibited at each of the
spikes following the nth. Define neuron k as the neuron with
the largest index among the neurons that have been excited
after the nth spike. It is clear that neuron k has never spiked
after the nth spike. According to lemma 1 and lemma 2, right
after it is excited, neuron k has a priority over neuron i to
spike. The priority lasts as long as neuron k does not spike
and neuron i is not excited. If neuron k spikes, neuron k+1
replaces neuron k as the largest index neuron. Therefore neu-
ron i cannot spike again unless excited.

Theorem. After a finite number of transient spikes, spike
propagation along the chain must be established if Eq. �7� is
satisfied.

Proof. The following steps lead to the proof. �1� Define An
as the set of neurons that have spiked but not been excited
after their recent spikes up to the nth spike. According to
lemma 4, the �n+1�th spike cannot come from An. �2� Define
Bn as the set of neurons that are not in An and not neuron
sn+1, which is excited by the nth spike. A neuron that is not
sn+1 is either in An or Bn. Note that the neuron sn+1, which
spikes next, must be either neuron sn+1 or come from Bn. �3�
If n is large enough, the �n+1�th spike cannot come from Bn,
therefore the excited neuron must spike next, i.e., sn+1=sn
+1. The spike propagation is then established.

The statement �3� is proved using the following:
Lemma 5. Consider a neuron j in Bn and a purely inhib-

ited neuron k �which is also in Bn�. The difference between
the PSTF’s of neuron k and j is upper bounded by an expo-
nential decay, i.e., �k

�n�+−� j
�n�+�n��I−1�.

Proof. We use mathematical induction. For n=1, all neu-
rons in B1 are inhibited by the first spiking neuron, hence
�k

�1�+−� j
�1�+���I−1�, following a derivation similar to that

of lemma 2. If the equation holds for n=m, it also holds for
n=m+1. A neuron j in Bm+1 either �a� was in Bm or �b� was
excited by the mth spike but did not spike next, i.e., j
�sm+1. For any case � j

�m�+�mini�Bm
�i

�m�+, which is obvious
for �a�, and is true for �b� because the next spiking neuron,
sm+1, should come from Bm and � j

�m�+��sm+1

�m�+. Therefore,
�k

�m�+−� j
�m�+�k

�m�+−mini�Bm
�i

�m�+�m��I−1�. Using this
and observing that both neurons k and j are inhibited by the
�m+1�th spike, we find �k

�m+1�+−� j
�m+1�+�m+1��I−1�.

Lemma 5 shows that the PSTF of a purely inhibited neu-
ron is vanishingly close to the minimum of the PSTF’s of
neurons in Bn as n increases. Since the PSTF of the excited
neuron is smaller than that of the purely inhibited neuron by
a finite value, the excited neuron has a priority to spike to all
neurons in Bn for a large enough n.

APPENDIX B

Here we show that the condition given by Eq. �7� also
guarantees a winner-take-all propagation of spikes when the
excitatory connections form multiple infinitely long chains
coupled only through the global inhibition.

Using the same reasoning for the single chain case, it can
be shown that spikes must propagate successively in each
chain after some transient spikes. We now show that alter-
nating propagation in multiple chains is not possible. It is
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sufficient to study the case of two chains since the reasoning
applies equally to any number of chains.

Denote the index of the neuron that emitted the nth spike
as �cn ,sn�, where cn=1,2 is the index of the chain and sn is
the index of the neuron in the chain cn, and the chain that
does not contain the nth spiked neuron as c̄n.
Consider a spike sequence with alternating propagation:
�1,a1� , �1,a1+1� , . . . , �1,a2−1�, �2,b1� , �2,b1+1� , . . . , �2,b2
−1� , �1,a2� , . . . where a1�a2� . . . ,b1�b2� . . .. We show
that, if n�N1+1, then �cn+1 ,sn+1�= �cn ,sn+1�, i.e., the spike
activity settles to a propagation in chain cn.

To prove the above statement, we use the following:
Lemma 6. Consider a purely inhibited neuron �c ,k�. Then

�c,k
�n�+−�c̄n,j

�n�+��n��I−1�.
Proof. The proof is similar to that of lemma 5. For n=1,

all neurons in branch c̄1 are inhibited by the first spike, hence
�c,k

�1�+−�c̄1,j
�1�+����I−1�. If the lemma holds for n=m, it also

holds for n=m+1. From �c,k
�m�+−�c̄m,j

�m�+��m��I−1�, we get

�c,k
�m�+−�c̄m+1,j

�m�+ ��m��I−1�. This is obvious if cm+1=cm; if

cm+1= c̄m, the neuron �cm+1 ,sm+1� has smaller PSTF than
�cm,j

�m�+ and satisfies �c,k
�m�+−�cm+1,sm+1

�m�+ ��m��I−1�. All neurons
in branch c̄m+1 are inhibited by the �m+1�th spike, hence
�c,k

�m+1�+−�c̄m+1,j
�m+1�+��m+1��I−1�.

According to the lemma, after a finite number of transient
spikes, the excited neuron has a priority to spike over all
neurons in the other branch because the lower bound of their
PSTF’s are vanishingly close to that of a purely inhibited
neuron. Therefore the alternating spiking pattern cannot last
indefinitely.
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