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SI Results
The reinforcement test showed a correlation between changes in
pattern and changes in distance. As an extension of this analysis,
we examined what effect trial-by-trial changes in the distance that
the eyes traveled during the Reward Scan period (cost) would
have on the loop sequences. We hypothesized that if cost had an
effect on loop sequence performance then a cost benefit would
result in the monkey performing a sequence sooner (i.e., after
fewer trials), whereas detrimental cost would result in the monkey
performing a sequence later (i.e., after many trials). To test this
hypothesis, for each trial on which a loop sequence was performed
we calculated the intersequence interval (ISI): the number of
trials that transpired before the loop sequence was performed
again. The ISI for the current trial was then compared to the
change in cost from the previous trial.
We found a significant positive correlation between themean ISI

and themean change in distance (shuffle test, P≤ 0.05; Fig. S5, and
SI Methods for more details). This finding suggests that when the
monkey performed a loop sequence (e.g., G9 purple and Y9 yel-
low; Fig. S5 A and B), if the monkey’s eyes traveled a shorter dis-
tance during the Reward Scan on that trial compared with the
previous trial (negative cost), then the monkey would repeat that
same loop sequence in a fewer number of trials than if there had
been a greater cost. Thisfinding held for the pool of loop sequences
illustrated in Fig. 2 across both monkeys for both grid sizes (Fig.
S5 C and D). In contrast to the parallel between the monkeys’ and
the modeled behavior in all previous analyses, this correlation
between ISI and cost was not seen in theREINFORCE algorithm-
simulated data (Fig. S5E). This finding suggests that RL could
account for the shifts in the loop sequences as performed by the
monkeys, and leaves an avenue for the possible expansion of the
RL model.
We used the data produced by the REINFORCE algorithm to

validate the reinforcement test used on the monkey data in several
ways. First, we used the reinforcement test on the simulated data to
confirm the presence of RL in the same manner as in the monkeys
(Fig. S7 Left columns). The presence of RL was not detected in
the simulated data when the reward (negative geometric distance)
on each trial was randomly assigned to be a number between 10
and 15, which was approximately the same range as the distances
on the REINFORCE simulated trials (Fig. S7 Right columns).
Second, to examine howaccurate the reinforcement test was, we

performed multiple simulations and randomly assigned each
simulation to either use REINFORCE or have random reward as
described above. Each of the 300 simulations had 100 sessions with
200 trials each session. For each simulation, the reinforcement test
was used to calculate the P value of the slope of the correlation
between the change in distance and the dissimilarity in the change
of patterns. For the four- and nine-target simulations, the false-
positive rate was less than 0.3% with none of the slopes in the
random reward condition simulations having a P value of less than
0.01 (Fig. S8). Receiver operating characteristic (ROC) analysis
showed there was an improvement in the true positive rate when
more sessions were used (200 sessions per simulation), but there
were still no false positives, further supporting the use of this test to
detect RL.
In this task, measures of distance, reward rate, and number of

saccades/fixations were all correlated. Consequently, there existed
the possibility that a parameter other than distance would be the
bestdriveforreinforcement learning.Becausetherewasonereward
at theendof each trial (rewardwasconstant), reward rate is inverse-
ly proportional to the time required to capture the baited target.

Similarly, because each saccade was surrounded by two fixations
that occupied a larger fraction of time (∼150ms per fixation vs.∼30
ms per saccade), the number of saccades is approximately pro-
portional to the time.
To disambiguate these factors, we used the REINFORCE al-

gorithm and simulated 5,000 sessions of 200 trials each using
the reward rate as the reinforcement drive with the goal being to
maximize the reward rate. Reward rate was calculated as one over
the time to capture the baited target, with the duration of each
fixation set to 150ms and the duration of each saccade set to 30 ms
times the geometric distance of the saccade (one unit equals the
horizontal or vertical distancebetweenadjacent targets).We found
that the session-averaged reward rate, distance, and entropy took
a greater number of sessions to reach steady-state than when the
distance was used as the reinforcement drive in the simulations
(Fig. S9 A–C). More strikingly, by the 5,000th session the reward
rate-based simulation had not converged on the optimal path (Fig.
S9D andE, black) as had the distance-based simulations (Fig. 6E).
The final transition probabilities reached by the reward maxi-

mizing REINFORCE simulation, despite not having converged
on themost optimal path, could have been close to optimal. To test
theperformanceof thefinal setof transitionprobabilities (Fig.S9E,
black) in comparison with the optimal (Fig. S9E, red) or a nearly
optimal (Fig. S9E, green) in distance path, we generated 50,000
saccade sequences using Monte Carlo simulations and calculated
the mean reward rate of each set of transitions. We found that the
mean reward rates were nearly equivalent for all three paths:
0.0019422, 0.0019962, and 0.0019986 rewards per ms, respectively
(Fig. S9F). Thus the reward maximizing simulation did indeed
yield a set of transitions that produced a comparable mean reward
rate; however, there were too many patterns that also had close
to optimal reward rates and the optimal distance path was not
converged upon. In contrast, minimizing the distance using
REINFORCE had a unique pattern that the monkey also con-
verged on.
For the same three sets of transitions discussed above, the total

geometric distance means were 8.0553, 5.8462, and 6.4445, re-
spectively (Fig. S9G). The mean simulated number of saccades to
complete the trial was similar with the final reward maximizing
simulation transitions being the greatest and the optimal, and
nearly optimal distance paths had a mean of fewer saccades (Fig.
S9H). Therefore, to simulate this task, minimizing distance more
closely approximated the monkeys’ behavior and converged on
the optimal policy, whereas maximizing reward rate did not.

SI Methods
Behavioral Data Acquisition. Two adult female monkeys (macacca
mulata) were studied (∼5.9 kg each). Eye position was monitored
by infrared eye tracking (500 Hz; SRResearch Ltd.) and recorded
with a CheetahData Acquisition system (2 KHz; Neuralynx, Inc.).
Custom behavior control software was designed inDelphi III. The
monkey was seated ∼50 cm from the LCD screen, and a “hot”
mirror that passed visual light and reflected infrared light to the
camera above was placed at a 45° angle in front of the monkey.
Before behavioral data acquisition, a head post and recording
chamber were surgically implanted under pentobarbital anesthe-
sia using sterile methods according to National Institutes of
Health guidelines and as approved by Massachusetts Institute of
Technology’s Committee on Animal Care.

Behavioral Procedures. Each free-viewing scan trial consisted of
task epochs as shown in Fig. 1, with slight differences between the
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two monkeys. The Reward Delay was 400–800 ms (G) or 600–
1,200 ms (Y). Reward Time was 200 ms of liquid juice (G) or 250
ms of food mush (Y), and the ITI was 2 s (G) or 3 s (Y). The gray
target grids had either 49 (1.6° diameter, 4.1° spacing, monkey G)
or 36 (2.0° diameter, 5.4° spacing, monkey Y) targets. The green
target grid replaced the inner portion of the gray grid leaving a
perimeter of gray targets and consisted of either four or nine
targets (diameters: 4.0°, 2.7°; center-to-center spacing: 13.9°, 7.7°,
respectively), depending on task acquisition and performance.
Both grids spanned the central 17.6° of the screen, and the sum of
the total area of green was equal.
Once the green target grid appeared at the end of the Start

Delay, the monkey had 5 s to enter the green grid space, although
the monkey’s eye position was usually already within that space
or became so on the next saccade. On the rare occasion when the
monkey’s eye position did not enter the green grid space, the
trial was aborted. During the Reward Scan, the start of which
was not signaled to the monkey, the pseudorandomly chosen
baited target could be captured by the monkey’s gaze either
fixating on or saccading through the target. The only constraint
placed on the monkey’s eye position throughout the Total Scan
Time was that it had to remain within the area defined by the
green target grid when it was displayed. Exiting this grid resulted
in the trial being aborted by extinguishing the green grid and
proceeding directly to the ITI with no reward delivered.
The first session of task acquisition required an initial estimate

of the eye position in relation to the targets. The four-target scan
grid was displayed and a treat (e.g., a raisin) was placed in front of
one of the targets. The gain and offset of the eye position signal
was adjusted so that when the monkey’s eye position was near the
treat/target, it was rewarded via the tube in front of its mouth.
This procedure was repeated for all four targets. Subsequent
recording sessions also included a short period of calibration
using the four-target task, but without the assistance of treats.
Throughout task acquisition, three parameters were manipu-

lated to shape the monkey’s behavior: (i) rewarding any target
that was captured after the Delay Scan (Fig. S1B); (ii) adjusting
the size of the window around each target that would trigger
capture (Fig. S1C); and (iii) adjusting the duration of the Delay
Scan (Fig. S1D). This third parameter was the main one used for
shaping. During initial task acquisition, the Delay Scan was
negligible (1–2 ms) but was increased in increments of ∼50 ms
(e.g., 50–100 ms, 100–200 ms) as guided by the monkey’s task
performance. In general, the monkey’s performance was con-
sidered suitable for an increase in Delay Scan time if in the two
preceding groups of 50 trials the monkey had attained 80% re-
warded trials or better. The observation that the monkeys con-
tinued to move their eyes during the Delay Scan when they were
not required to do so (see Fig. S2 G–I) could be a result of this
shaping procedure. However, it could also indicate that the au-
tomatic execution of saccade sequences in a habited manner
was “easier” than timing when the baited target would become
available for capture.
Each session consisting of ∼1,000 rewarded trials was divided

into the following blocks: rest, calibration, five scan task blocks,
rest, five scan task blocks, and rest. In the rest block the monkey
sat passively in front of a black screen for a period approximately
equal to 40 trials (∼5 s each). The calibration block was typically
5–15 trials and was occasionally repeated later in the task session
if drift of the eye position was suspected. Each scan block con-
sisted of ∼100 rewarded trials of a single grid size with each
target chosen to be baited an approximately equal number of
times. Monkeys first acquired the four-target task. When more
than one grid size was used, monkey G had one block per half-
session of the smaller grid size(s), and the remaining blocks were
the largest grid size (e.g., 100 four-target trials, 400 nine-target
trials in a half-session). This structure was simplified for monkey
Y so that all scan blocks would be the same target grid size with the

exception of one session per week where half the scan blocks were
four-target and the other half were nine-target (e.g., 250 four-tar-
get trials, 250 nine-target trials in a half-session). Grid sizes with
more than nine targets were attempted with monkey G (16 and 25
targets), but were not included for analysis or performed with
monkey Y, due to the difficulty the monkeys had in scanning them.

Data Analysis. One Y4 and one Y9 session were excluded due to
data loss. Session blocks with fewer than 55% rewarded trials
were only included if performance on other blocks indicated the
monkey was sufficiently motivated to perform the task, and
session blocks with fewer than 40 rewarded trials were not in-
cluded in analyses (∼4% excluded overall). All eye movement
analysis was done in Matlab.
Horizontal and vertical eye position traces were postprocessed

offline in preparation for data analysis as follows. Traces were
filtered to remove and interpolate between short (<2 ms), high-
velocity events that resulted from the eye-tracking camera mo-
mentarily not being able to track the eye and then smoothed using
a 33-sample wide Hanning window. Slight calibration adjustments
were then made by hand to ensure the eye traces were in proper
register with the displayed targets. Eye traces were then separated
into fixations, saccades, and blinks. Velocity thresholds for sac-
cades and blinks were automatically set on a session-by-session
basis according to the distribution of velocities for the entire
session. Position thresholds for blinks were also found automati-
cally by determining the maximum values of the horizontal and
vertical eye positions per session. Blinks were then parsed by de-
termining spans of time >500 ms that exceeded the blink velocity
and/or eye position thresholds. A small number of sessions were
found to have oscillatory noise; if this was the case, blinks were
removed from the eye traces; the resulting gap was filled by in-
terpolation and the resulting trace was low-pass filtered using
a Butterworth filter. Saccades were parsed by identifying nonblink
velocity threshold crossings and then fitting them with a Gaussian
or sum of Gaussians, depending on the complexity of the velocity
profile. All times that were not categorized as a blink or saccade at
the end of this process were marked as a fixation. Fixation and
saccade event markers were then “cleaned” to prevent im-
possibilities, such as durations that were too short or too long or
that included many overlapping events in a short period (>30
events per sec in a 200-ms sliding window). Eye movements were
tabulated trial-by-trial for import into a database (Microsoft Ac-
cess or Post GRE SQL) and subsequent data analyses.
The most frequent eye movement paths or “loop” sequences

were assembled by identifying the top 20 unique sequences of five
fixations with greater than 20 occurrences and an incidence of
greater than 1% in a single session. Sequences of length five were
used after examining all sequence lengths and obtaining similar
results; there were a manageable number of five-fixation se-
quences. These were pooled and inspected for overlapping fixation
sequences that completed a full loop (began and ended on the
same target). The percentage of trials that contained any of the
permutations of the full loop (regardless of start or stop position
and, if applicable, regardless of whether a middle target was
stopped on or passed through) was tallied.
The session at which behavioral measures reached asymptote

was determined as follows. Starting with all sessions and then one-
by-one subtracting beginning sessions (e.g., sessions 1–60, 2–60,
3–60, etc.), data were fitted with regression lines. The slope of
each resulting line was tested with a t test to determine whether
it was significantly (P < 0.01) different from zero. The data were
said to have reached asymptote when the slope of the resulting
line fit was not significantly different from zero.
The fraction of trial fixations that were members of the loop

sequences was calculated by first determining whether each fix-
ation in each trial was a member of any of the loop sequences for
that condition, as shown in Fig. 2. Then the fraction of fixations
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that were members of the loop sequences over all fixations in
that trial was calculated. This fraction was averaged, session-by-
session, for all rewarded trials.
Transition probabilities used for nonnegative matrix factor-

ization (NMF) were calculated as the probability of a saccade
from one target to the next (given fixation on the start target). The
number of factors for NMFwas determined by computing the rms
residual of the factorization using up to 10 (four-target) or 20
(nine-target) factors and determining the number of factors
necessary for the residuals to complete an initial drop (an “elbow
method”). Two NMF decomposition algorithms were applied, an
alternating least-squares algorithm and Seung’s multiplicative
update algorithm (1), and the result with smallest residual was
chosen (as this best optimizes the NMF objective function). The
component factors were normalized.
The statistical dispersion of each NMF factor was assessed by

multiplying the absolute value of distance from the median by the
height (value)at eachsession.Thevalueofeach factorateachsession
was then shuffledand the samestatistic computedagain.Thisprocess
was repeated 10,000 times, and the P value was the fraction of runs
with a statistic less than that of the nonshuffled factor.
Themost optimal deterministic patterns were determined using

anexhaustive searchalgorithmwith the following threecriteria: the
solution (i) must have the shortest path length; (ii) must cover all
targets in the grid; (iii) must start and end on the same target to
form a closed “loop.”
To reduce variability in the distance calculation due to be-

havioral shaping for the reinforcement test and intersequence
interval (ISI) analyses, we calculated the geometric distance the
monkey’s eyes traveled during the Total Scan Time using only
those trials in which the Delay Scan was >1 s and the Reward
Scan had more than one saccade. After this initial elimination of
trials, analysis was restricted to those trials that remained con-
secutive. In addition, saccades (distance traveled) in error trials
were added to the next rewarded trial, as there was no reward
delivered during error trials.
Formally, the reinforcement test was calculated as follows.

Reward was calculated as the negative of total distance. The delta
distance is defined as

Dk ¼ dk − dk− 1; [S1]

where dk is the total geometric distance of the saccades in the kth
trial. Positive Dk is punishment, and negative Dk is reward. To
measure the difference in saccade patterns, we compute the
transition probabilities Pk between the targets in the kth trial.
Note this will be a vector with N2 components (N = 4 or 9 tar-
gets). The change in the scan pattern is then defined as

Δðk; k− 1Þ ¼ PðkÞ−Pðk− 1Þ: [S2]

We then computed the delta pattern dissimilarity using the cosine
distance measure:

Sk ¼ Δðk; k− 1Þ·Δðkþ 1; kÞ
jΔðk; k− 1ÞjjΔðkþ 1; kÞj: [S3]

Here, |Δ(k, k − 1)| and |Δ(k+ 1, k)| are the lengths of the vectors.
To detect the correlation between Dk and Sk, we selected all trials
with |Dk| <Dmax, whereDmax is equal to the median of |Dk| plus 3×
the SD. This selection eliminated∼2–3% of the points inDk at the
extremes. The resulting selected trials were then pooled into 10
equal-size bins, and the median change in distance (D) and pat-
tern dissimilarity (S) was calculated for each bin. A regression line
was fit to those data. To determine if the slope of the line was
significant, we randomly shuffled S 500 times and computed the
slope of the resulting regression line after binning by the same

procedure. The P value is given by the fraction of times the actual
slope is less than that of one of the shuffles.
The correlation between the change in distance (D) and the ISI

was calculated in the same manner as for the reinforcement test.
The data were pooled into 10 equal-size bins and the mean
change in distance and ISI was calculated for each bin. A re-
gression line was fit to those data. To determine if the slope of
the line was significant, we randomly shuffled ISI 500 times and
computed the slope of the resulting regression line after binning
by the same procedure. The P value is given by the fraction of
times the actual slope is less than that of one of the shuffles.
We constructed the REINFORCE algorithm as follows. The

agent followed a Markovian decision mechanism to generate
saccades. From target j, the probability of a saccade to target i
was pij. Here i, j = 1, . . ., N, where N = 4 or 9 targets. A “start
target” was designated as j = 0 that corresponded to the initial
state of the agent outside of the targets. The transition proba-
bilities were determined from the values mij associated with the
transition from j to i. To determine the probabilities from the
values in a manner that would balance discouraging the ap-
pearance of suboptimal stereotypical patterns too early, and al-
lowing enough exploration without slow exploitation, we used
the following method:

pij ¼
m4

ij

∑jm
4
ij
: [S4]

We generated exploration in mij through sampling a Gaussian
distribution:

p
�
mij

� ¼ N
�
Mij; σ

� ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e
ðmij −MijÞ2

2σ2 : [S5]

Here, Mij is the mean of the action values, and σ is the SD. To
keep the size of the exploration comparable to the mean, we
scaled uniformly at each trial:

Mij→ ð1− δÞMij: [S6]

Note that a uniform scaling of Mij does not change the averaged
transition probabilities. The constant reduction of Mij balanced
the growth of Mij through learning, which kept exploration
greater than a minimal level. The learning rule used so that re-
ward would influence how the mean values changed for the ex-
ploit step was as follows:

Mij → Mij þ α ðrðtÞ− �rÞ�mij −Mij
�
; [S7]

where r(t) is the reward at time step t, �r is the averaged reward of
past trials, and α is the learning rate. The averaged reward of
past trials can be estimated using:

�r ðtÞ ¼ γrðt− 1Þ þ ð1− γÞ�rðt− 1Þ: [S8]

This is a discrete version of the differential equation:

d�rðtÞ
dt

¼ γ
�
rðtÞ−�rðtÞ

�
: [S9]

The above learning mechanism can be mathematically derived
from the REINFORCE mechanisms proposed by Williams (2).
Our agent had random action values to start with. At each trial,

new action valueswere sampled from theGaussian distribution and
these values determined the transition probabilities fromwhich the
sequence of saccades was generated following the same task con-
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straints as themonkeys (1- to 2-s Delay Scan and a randomly baited
target). The parameters used in the simulations were: σ= 0.1; γ=
0.5; δ = 10− 5; α = 10−2 for four targets and α = 2 × 10−3 for nine
targets. These parameters were selected to ensure fast convergence
of the saccade patterns to the optimal patterns. Additionally, at

each saccade there was a 1% chance that the simulation would
make an “error” and abort the trial (11–13% of trials, similar to
error rate of monkeys). This allowed the termination of saccade
patterns which did not cover all the targets. The distance or time
spent in an error trial was added to the next trial’s values.

1. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix
factorization. Nature 401:788–791.

2. Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach Learn 8:229–256.
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Fig. S1. Task performance and shaping parameters. All rows show the monkeys and the conditions in the following order: G4 (monkey G in four-target task),
G9, Y4, and Y9. (A) Percent of rewarded trials per session. (B and C) Dots indicate values of parameters in each session; lines indicate the average of the values.
(B) Indicates for each session the presence (1) or absence (0) of the parameter rewarding any target entered after the Delay Scan. Note this parameter was not
used in G9 or Y9. (C) In each session, the number of degrees the radius of the acceptable window around the target was greater than the radius of the target.
Note this parameter was not used in G9 or Y4. (D) Mean ± SD. Delay scan time for each session. Red dashed line for all plots indicates the mean of 1.5 s that is
reached when the monkey completes task acquisition and performs the full 1- to 2-s Delay Scan.
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Fig. S2. Example trials and scan pattern statistics. (A and B) Eye movements of monkey G for five sequential trials during the Total Scan Time. Time is
represented by color from dark blue (green targets on) to dark red (green targets off). (A) Session 12, four-target task. (B) Session 21, nine-target task. (C and D)
Fixation rasters with loop sequences highlighted. Each horizontal line represents the Total Scan Time for each rewarded trial for G9 trials during session 21 (C)
and session 60 (D). Time 0 is the onset of the green target grid. Black dots indicate fixation onset times. Horizontal colored lines indicate fixations that are
members of the loop sequences shown in Fig. 2, with the same color code. (E–I) Monkey and task condition for each row as indicated by cartoon in the lower
right of row E. Dark gray horizontal shading indicates approximate confidence limits where applicable (±1.96 × SEM). (E) Mean fraction of fixations per trial

Legend continued on following page
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Fig. S4. Trial-by-trial reinforcement test shows correlation between cost and change in pattern. Each column corresponds to the monkey and task conditions
as depicted above row A. (A) The overall distribution of change in geometric distance and dissimilarity of the change in pattern, where pattern is the set of
transition probabilities representing a single trial. Each point represents one trial: G4: n = 6,109 trials; Y4: n = 25,113 trials; G9: n = 5,912; and Y9: n = 54,214. (B)
Histogram of slopes resulting from shuffling the dissimilarity of change in the patterns 500 times and computing the resulting slope for each. Actual slope
indicated by red line and depicted in Fig. 5. All shuffled slopes were found to be less than the actual slope, indicating a significance of P < 0.002.

during the Total Scan Time that are members of any of the loop sequences as diagrammed in Fig. 2 for each monkey in each task condition (e.g., Y4 shows
fraction of fixations per trial that are members of any of the three paths diagrammed in Fig. 2B). (F) Mean number of saccades per Reward Scan period. Gray
shaded vertical bars indicate sessions containing shaping periods when the task was made easier for the monkey (see Methods and Fig. S1). (G) Mean number
of saccades per second (±1.96 × SEM; note error bars are too small to be seen) in the first second after the green target grid turns on (begin range 0:1 s) and
the last second before the baited target is captured and the green target grid turns off (end range −1:0 s). (H) Same as in G with saccade rate in the first and
last seconds shown in 0.25-s bins with greater bin edge listed for each bin, e.g., begin range 0:0.25 s, 0.25:0.5 s, end range −0.5: −0.25 s, −0.25:0 s, etc. Note the
last bin (−0.25:0 s) for each monkey and task condition is likely the largest because by definition the green targets will turn off when the baited target is
captured with a saccade, thus making the minimum number of saccades in that bin 1 instead of 0. (I) Mean fraction of saccades per trial that pass through
intervening targets.
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Fig. S3. Monkeys converge on efficient deterministic patterns. The most efficient deterministic patterns for the four-target (A) and nine-target (B) tasks as
computed using an exhaustive search algorithm are shown. Total geometric distance to cover all of the targets using the depicted path is noted. Only one of
many possible equivalent rotations and reflections is shown for each path. Paths the monkeys performed are colored red or purple to correspond with Fig. 2.
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Fig. S5. Correlation between trial-by-trial change in distance and intersequence interval (ISI). All rows contain the same three elements as follows. (Left)
Overall distribution of change in geometric distance and ISI across all trials containing the pattern(s). Each data point is a trial with the number of trials (n)
listed below. (Center) Mean and line fit of each of 10 bins each containing the same number of trials (bin edges indicated by red lines in left column). Linear
correlation coefficient (R) and correlation p value listed below. (Right) Histogram of slopes resulting from shuffling the ISI and change in distance 500 times and
computing the resulting slope for each. Actual slope illustrated in center column indicated by red line. P value listed is fraction of shuffled slopes greater than
actual. (A) ISI correlation for an example G9 path: n = 878; R = 0.625, p = 0.053, slope = 0.15; P = 0.03. (B) ISI correlation for an example Y9 path: n = 6,702; R =
0.787, p = 0.007, slope = 0.37; P < 0.002. (C) Pool of all trials containing any of the four-target paths diagramed in Fig. 2 A and B: n = 35,350; R = 0.564, p = 0.089,
slope = 0.01; p = 0.01. (D) Pool of all trials containing any of the nine-target paths diagrammed in Fig. 2 C and D: n = 76,885; R = 0.766, p = 0.010, slope = 0.25;
P < 0.002. (E) Pool of all trials containing any of the simulated nine-target task (Sim9) loop sequences; note there is no correlation: n = 29,953; R = −0.011, p =
0.976, slope = −0.005, P = 0.49.
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corresponds to the simulation and task conditions as depicted above row A: four-target simulation (Sim4), nine-target simulation (Sim9), four-target simulation
with random reward (Rand Sim4), and nine-target simulation with random reward (Rand Sim9). (A) Overall distribution of change in geometric distance and
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(REINFORCE simulations) show significant slope (P < 0.002) and right two columns do not (random reward simulations, P = 0.58 and P = 0.60, respectively).
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Fig. S8. Reinforcement test detects RL with almost no false positives. Simulation and task condition depicted above row A: Sim4 100, 300 simulations of 100
sessions each; Sim9 100, 300 simulations of 100 sessions each; Sim9 200, 300 simulations of 200 sessions each. All simulated sessions contained 200 trials. Each
simulation was randomly assigned to the REINFORCE algorithm or random reward algorithm. (A) Histogram of the P values of the slopes obtained using the
reinforcement test on each of the simulations assigned to the REINFORCE algorithm. True positive rates noted are the percentage of P value counts where P <
0.01. (B) Histogram of the P values of the slopes obtained using the reinforcement test on each of the simulations assigned to the random reward algorithm.
False positive rates noted are the percentage of P value counts where P < 0.01. (C) Receiver operating characteristic (ROC) curve for the results of the 300
simulations in each condition.
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Fig. S9. REINFORCE simulation using reward rate instead of distance does not converge on optimal path. Simulation of 5,000 nine-target sessions, 200 trials
each using reward rate (1/trial time with fixations = 150 ms and unit distance saccades = 30 ms) as the reward signal. (A–C) Left column is the first 200 simulated
sessions and right column is all 5,000 simulated sessions. (A) Mean reward rate per session. (B) Mean geometric distance per session. (C) Entropy per session. (D)
Final transition probabilities in the 5,000th session. Note the very low probability of visiting the center target. (E) Black: most probable path corresponding to
D. Red: optimal distance path (Fig. S3B). Green: near-optimal distance path (Fig. S3B) with the same number of fixations as the optimal path. (F–H) Histogram of
reward rates generated by 50,000 saccade sequences in Monte Carlo simulations of the task using the paths depicted in E. Vertical dashed lines indicate the
mean of each distribution. (F) Histogram of reward rates. Note the mean reward rate is nearly identical for all three paths. (G) Histogram of total geometric
distance. (H) Histogram of the total number of saccades.

Desrochers et al. www.pnas.org/cgi/content/short/1013470107 10 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013470107/-/DCSupplemental/pnas.201013470SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013470107/-/DCSupplemental/pnas.201013470SI.pdf?targetid=nameddest=SF3
www.pnas.org/cgi/content/short/1013470107

