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Abstract Avian brain area HVC is known to be important
for the production of birdsong. In zebra finches, each RA-
projecting neuron in HVC emits a single burst of spikes
during a song motif. The population of neurons is acti-
vated in a precisely timed, stereotyped sequence. We pro-
pose a model of these burst sequences that relies on two
hypotheses. First, we hypothesize that the sequential order
of bursting is reflected in the excitatory synaptic connec-
tions between neurons. Second, we propose that the neu-
rons are intrinsically bursting, so that burst duration is set
by cellular properties. Our model generates burst sequences
similar to those observed in HVC. If intrinsic bursting is
removed from the model, burst sequences can also be pro-
duced. However, they require more fine-tuning of synaptic
strengths, and are therefore less robust. In our model,
intrinsic bursting is caused by dendritic calcium spikes, and

strong spike frequency adaptation in the soma contributes
to burst termination.
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1 Introduction

How does the brain generate behaviors that are composed
of long sequences of actions, such as language and musical
performance? According to one idea, sequential behaviors
are generated by the sequential activation of groups of
neurons. In the associative chaining model, the neurons of
one group directly excite the neurons of the next group, so
that sequential order is directly embedded in the structure of
excitatory synaptic connectivity. This model was criticized
by Lashley on theoretical grounds as insufficient for
explaining the full complexity of sequential behaviors
(Lashley 1951). However, the model has never actually
been tested through neurobiological experiments.

Recent progress in the neurobiology of birdsong has set
the stage for testing the associative chaining model in a
non-human animal (Chi and Margoliash 2001; Doupe and
Kuhl 1999; Fee et al. 2004; Hahnloser et al. 2002; Konishi
1965; Leonardo and Fee 2005; Nottebohm et al. 1976;
Williams 2004; Yu and Margoliash 1996). The goal of this
paper is to give a biophysically realistic implementation of
the associative chaining model applied to birdsong. As will
be seen later, our implementation of the model leads to a
number of predictions that can be tested experimentally.

The zebra finch sings a single, highly stereotyped song
that consists of repetitions of a motif, typically 0.5–1 s in
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duration (Immelmann 1969).1 The motif is composed of
3–7 smaller vocal gestures called song syllables. Lesion
studies indicate that avian brain area HVC (used as a
proper name) plays an important role in the production of
birdsong (Nottebohm et al. 1976). Of the several classes of
neurons found in HVC (Dutar et al. 1998; Fortune and
Margoliash 1995; Katz and Gurney 1981; Kubota and
Taniguchi 1998; Lewicki 1996; Mooney 2000; Nixdorf et al.
1989; Wild et al. 2005), those that project to RA (robust
nucleus of the arcopallium) are of prime importance for song
production, because RA drives the motor neurons that
control vocalization (Nottebohm et al. 1976, 1982; Vicario
1991) (Fig. 1(a)). We will refer to this class of HVC neurons
as RA-projecting, HVC(RA) neurons for short.

In zebra finches, an HVC(RA) neuron emits exactly one
burst of several spikes during a song motif 2 (Fee et al.
2004; Hahnloser et al. 2002) (Fig. 1(b)). The timing of the
burst is remarkably precise, with a jitter of less than a
millisecond relative to the song. The burst onset times of
the neurons are thought to be distributed throughout the
motif. This means that the population of HVC(RA) neurons
generate a highly stereotyped, precisely timed sequence of
bursts. This burst sequence drives activity in RA, which in
turn drives the motor neurons that control vocalization (Fee
et al. 2004; Hahnloser et al. 2002; Leonardo and Fee 2005).

In this paper, we will assume that the burst sequences are
generated within HVC itself, rather than driven by input
from an upstream brain area. While this assumption is not
yet proven, it is consistent with existing experimental data.
Upstream nuclei such as NIf (nucleus interfacialis of the
nidopallium) and Uva (nucleus uvaeformis) project to HVC
(Nottehbohm et al. 1976, 1982). However, lesion studies
show that NIf is not necessary for song (Cardin et al. 2004).
While Uva is necessary for song (Coleman and Vu 2005),
there is no evidence yet that activity of Uva neurons is
precisely timed enough to drive burst sequences in HVC.
Therefore it seems reasonable to assume, at least provi-
sionally, that the burst sequences are actually generated in
HVC itself.

What circuit and cellular mechanisms in HVC could be
responsible for burst sequences? We will advance two
hypotheses.

Hypothesis 1 If neurons A and B are activated consecu-
tively in the burst sequence, then there is likely to be an
excitatory synapse from A to B.

Hypothesis 2 HVC(RA) neurons are intrinsically bursting,
so that burst duration is set by cellular properties.

The first hypothesis follows the classic associative
chaining model of sequence generation. According to the
hypothesis, structure is related to function: the sequential
order of bursting is embedded in the organization of
excitatory synapses between HVC(RA) neurons. The
second hypothesis relates the abstract associative chaining
model to specific biophysical mechanisms.

In the following, we first briefly overview our main
results. We then summarize the known facts about HVC, and
argue that a reduced model containing only HVC(RA)
neurons is appropriate for explaining burst sequences in
HVC. Finally, we discuss the possible synaptic connectivity
between HVC(RA) neurons. We focus on a particular
realization of Hypothesis 1, in which the HVC(RA) neurons
are divided into groups, and the groups are ordered in a
sequence. Each group makes excitatory synapses onto the
next group. If group 1 is activated by external input, then it
activates group 2, which activates group 3, and so on.
Because the groups are completely disjoint, a single neuron
is activated only once during the whole sequence. Abeles has
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Fig. 1 Avian brain area HVC. (a) HVC projects to RA and X. RA
drives motor neurons that control song production. X is the beginning
of the anterior forebrain pathway, which is important for song learning
but not production of previously learned song. (b) Activity of HVC
neurons. During a song motif, HVC(RA) neurons generate a single
burst of spikes, HVC(X) neurons generate several bursts, and HVC(I)
neurons are active throughout

1Note that the associative chaining model is ideally suited to the
stereotypy of zebra finch song, which contrasts with the extreme
diversity of sequences generated by humans. Lashley argued that a
hierarchical neural representation is necessary for generating such
diversity (Lashley 1951).
2To be more accurate, about half the HVC(RA) neurons do this, while
the other half are inactive (Hahnloser et al. 2002).
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utilized this synaptic connectivity in his synfire chain model,
which stresses synchronous spiking of neurons in each group
(Abeles 1982, 1991). Others have utilized this connectivity
in neural network models based on firing rates3 (Amari
1972; Kleinfeld 1986; Sompolinsky and Kanter 1986).

1.1 Overview

In the Results, we first study an associative chaining model
without intrinsic bursting in HVC(RA) neurons. We show
that the model can generate burst sequences like those seen
in HVC. However, there is a problem: the model requires
fine-tuning of synaptic strengths. Since the response of a
neuron depends on the amplitude and duration of synaptic
input, the number of spikes in a burst depends strongly on
synaptic strengths. If synapses are too strong, then there is
runaway activity, in which successive neurons in the
sequence produce longer and longer bursts of spikes. If
synapses are too weak, then the activity decays to zero.

To solve this robustness problem, we utilize Hypothesis
2, which is that HVC(RA) neurons are equipped with
intrinsic cellular mechanisms for generating bursts. When a
burst of spikes is initiated, it is a stereotyped event, with
only a weak dependence on the amplitude or duration of
synaptic input. As a result, little tuning of synaptic strengths
is required to produce burst sequences. This improved
robustness is demonstrated with numerical simulations of
our model.

Our Hypothesis 2 is not the only way of solving the
robustness problem, but it is arguably the simplest.
Obviously it is easier to construct a neural circuit that
generates bursts, if the elements in the circuit produce
bursts intrinsically. Other ways of solving the robustness
problem are mentioned in Section 4.

Whether HVC(RA) neurons indeed possess intrinsic
bursting mechanisms is currently unknown. A number of
such mechanisms have been studied in other neurons
(Brumberg et al. 2000; Franceschetti et al. 1995; Mattia
et al. 1997; Schwindt and Crill 1999; Traub et al. 1994;
Wong and Stewart 1992), and any of them would be
sufficient for generating the bursts observed in HVC. We
can only speculate as to the mechanisms that could be
involved. In our model, the dendrites of HVC(RA) neurons
produce a calcium spike, due to the presence of voltage-
activated calcium channels. This calcium spike depolarizes
the soma, producing a burst of sodium spikes.

Calcium spikes can last tens of milliseconds in hippo-
campal and cortical neurons (Golding et al. 1999; Schwindt
and Crill 1999; Wei et al. 2001). If HVC(RA) neurons have

calcium spikes of similar duration, what could account for
the fact that bursts in HVC have an average duration of
6 ms (Hahnloser et al. 2002)? To limit the duration of
sodium spiking, our model incorporates a biophysical
property that has been observed in HVC(RA) neurons in
vitro, strong spike frequency adaptation (Dutar et al. 1998;
Mooney and Prather 2005; Wild et al. 2005). As discussed
in Section 3, this causes sodium spiking to terminate before
the end of the calcium spike. One could also imagine that
HVC neurons possess calcium spikes that last for just 6 ms,
in which case strong spike frequency adaptation in the
soma would be less crucial.

The burst duration in our model is determined by intrinsic
cellular properties, rather than circuit properties. Therefore it
is natural to ask whether fine-tuning of intrinsic cellular
properties is required to generate bursting. We show that this
is not the case, as the number of spikes per burst is not very
sensitive to parameters of our model neuron.

Before proceeding further, we should say a few words
about our methodology, which could be described as “top-
down.” Table 1 lists four levels of description of HVC. We
begin near the top, with burst sequences. In order to explain
them, we make Hypothesis 1 about correlational connec-
tivity and Hypothesis 2 about intrinsic bursting. Hypothesis
2 is further elaborated by adding strong spike frequency
adaptation. Our model shows how these hypothetical
neuron and network properties could help generate burst
sequences, and therefore demonstrates their potential
functional significance for birdsong. Moving further down
in the table, specific channels are proposed as biophysical
mechanisms for the hypothetical single neuron properties.
These proposals are useful, because they suggest specific
ways of testing the neuron-level hypotheses experimentally
(see Section 4). However, the primary subject of this paper
is the functional implications of intrinsic cellular properties
for sequence generation, rather than the detailed biophys-
ical mechanisms of these intrinsic properties.

We have pursued a top-down modeling approach,
because the bottom-up approach is not possible at this
time. The channel properties of HVC neurons cannot serve
as a starting point for modeling, because so little is known
about them. A top-down approach has the advantage that it
guides research by focusing attention on neuron and

3In the more general correlation matrix model studied by these
authors, a single neuron is allowed to belong to more than one group.

Table 1 HVC model and levels of description

Behavior Song
Network Burst sequences

Correlational connectivity
Neuron Intrinsic bursting

Strong spike frequency adaptation
Channel Dendrite: ICa, ICaK

Soma: IKLT, IKHT
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channel properties that are most significant for behavioral
function.

1.2 Synaptic organization of HVC

In this section, we summarize the current knowledge about
synaptic connectivity of HVC, and introduce a reduced
model for sequence generation that focuses on the
excitatory synapses between HVC(RA) neurons, and omits
the other classes of neurons in HVC.

HVC contains two classes of projection neurons, those that
project to RA (HVC(RA)), and those that project to area X
(HVC(X)); it also contains interneurons (HVC(I)) (Dutar et al.
1998; Fortune and Margoliash 1995; Katz and Gurney 1981;
Kubota and Taniguchi 1998; Lewicki 1996; Mooney 2000;
Nixdorf et al. 1989; Wild et al. 2005). The projection to RA is
important for song production, as RA drives motor neurons
that control vocalization (Nottebohm et al. 1976, 1982; Vicario
1991). The projection to X enters the anterior forebrain
pathway, which is important for song learning but not
necessary for song production (Brainard and Doupe 2000).

Figure 2(a) is our best guess about the synaptic
connectivity of HVC, given the limited information that
exists in the literature (Mooney and Prather 2005).
According to the figure, HVC(RA) neurons make excitato-
ry synapses onto both HVC(RA) and HVC(X) neurons. In
contrast, HVC(X) neurons make no excitatory synapses
onto other projection neurons. Both types of projection
neurons make excitatory synapses on interneurons, and
receive inhibitory synapses from them.4 In the following,
we assume that the diagram of Fig. 2(a) is correct, and
argue that the simplified versions shown in Fig. 2(b and c)
should be good approximations.

Interneurons are much less temporally selective than
projection neurons in their song-related activity (Fig. 1(b)).
During a song motif, HVC(RA) neurons fire a single burst
of spikes (Hahnloser et al. 2002), and HVC(X) neurons fire
a few bursts (Kozhevnikov and Fee 2006). In contrast,
HVC(I) neurons fire at many times during a song motif
(Hahnloser et al. 2002).

If we make the approximation that interneurons have
constant firing rates during song, their dynamic inhibitory
input to the projection neurons can be replaced by a static
conductance. With this approximation, we can omit the
interneurons from Fig. 2(a), which yields the reduced
model shown in Fig. 2(b).

Neglecting synaptic inhibition may seem like a drastic
step. However, it seems justified provided that the goal of

modeling is to explain sequence generation. Since inhibi-
tion lacks temporal selectivity, its main role is likely to be
regulation of the overall level of activity in projection
neurons, which might enhance the robustness of sequence
generation.

In the reduced model of Fig. 2(b), HVC(RA) neurons
send feedforward drive to HVC(X) neurons, but receive no
signals from them, which implies that HVC(X) neurons are
irrelevant to the dynamics of HVC(RA) neurons. Therefore
we omit the HVC(X) neurons, as the projection to area X is
not necessary for song production anyway (Brainard and
Doupe 2000). This leads to a reduced model containing
only HVC(RA) neurons, as shown in Fig. 2(c). Note that
this reduction depends on the assumption that there are no
synapses from HVC(X) neurons to HVC(RA) neurons, as
in Fig. 2(a). This is consistent with the fact that targeted
destruction of HVC(X) neurons does not cause deteriora-
tion of song in adult zebra finches (Scharff et al. 2000).

1.3 Correlational models of synaptic connectivity

In the preceding section, we argued that a reduced model of
HVC containing only HVC(RA) neurons is a good starting
point for understanding sequence generation. But the
synaptic connectivity between HVC(RA) neurons is largely
unknown. In the Introduction, we proposed Hypothesis 1: if
neurons A and B are activated consecutively in the burst
sequence, then there is likely to be an excitatory synapse

4This diagram is based primarily on the work of Mooney and Prather
(2005). The evidence for recurrent inhibition is strong, but the
excitatory interactions between projection neurons are somewhat
speculative.
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HVCIN

HVCX
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Fig. 2 Synaptic organization of HVC and reduced models. (a) Hypothe-
sized synaptic organization of HVC. HVC(RA) neurons excite each
other and HVC(X) neurons. Both HVC(RA) and HVC(X) neurons
excite HVC(I) neurons, and receive inhibition from them. The
evidence for recurrent inhibition (solid lines) is strong (Mooney and
Prather 2005). The excitatory interactions between projection neurons
(dashed lines) are more speculative. The lack of synapses from HVC(X)
to HVC(RA) neurons is based on Scharff et al. (2000). (b) Reduced
model with projection neurons only. If the HVC(I) neurons have firing
rates that are approximately constant in time, then they can be omitted,
leaving a reduced model consisting of projection neurons only. (c)
Further reduced model with HVC(RA) neurons only. Since there are
essentially no backprojections from HVC(X) neurons to HVC(RA)
neurons, one can consider a reduced model consisting of HVC(RA)
neurons only
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from A to B. In other words, if neuron A fires just before
neuron B, we can infer that A probably helped cause B to
fire by giving it direct excitatory synaptic input. The
inference is probabilistic, since some imprecision of wiring
is expected in a neurobiological system. Since we are
inferring causation from temporal correlation, Hypothesis 1
can be called a correlational model of connectivity.

To make the implications of the correlational model
more explicit, it is worth stating the conditions under which
an excitatory synapse is not expected between neurons A
and B. If neuron A fires long before neuron B, there should
be no synapse between them (temporal contiguity is
important). If neuron A fires after neuron B, there should
be no synapse from A to B (temporal order is important).5

Many correlational models of synaptic connectivity have
been proposed for sequence generation (Abeles 1982;
Amari 1972; Kleinfeld 1986; Sompolinsky and Kanter
1986). The simplest is a unidirectional chain of neurons
(Fig. 3(a)). Each neuron makes an excitatory synapse onto
the next neuron in the chain. Somewhat more complex is a
unidirectional chain of groups of neurons. Each group
makes excitatory synapses onto the next group (Fig. 3(b)).
Another possibility is that each neuron makes synapses
onto several of its successors in the sequence (Fig. 3(c)),
which is not a simple chain architecture.6

In the rest of the paper, we will study the model of
Fig. 3(b), the unidirectional chain of groups. Our numerical
simulations will have 200 groups, each containing 30
neurons, for a total of 6,000 neurons. This model should
be regarded as just one possible implementation of the
correlational idea proposed in Hypothesis 1. But our
findings about the role of intrinsic bursting in generating
sequences are expected to apply to other correlational
connectivity, such as the one in Fig. 3(c).

2 Materials and methods

2.1 Two-compartment model of HVC(RA) neuron

Currently, there are no experimental data on ion channel
properties in HVC(RA) neurons. We therefore construct a
minimal conductance-based model of HVC(RA) neurons
following three guidelines: (1) The model must be
biophysically plausible; (2) the model must reproduce
known properties of HVC(RA) neurons, which mainly
come from experiments that injected currents to soma
(Dutar et al. 1998; Kubota and Taniguchi 1998; Mooney
et al. 2001; Wild et al. 2005); (3) the model must exhibit
robust burst spike propagation through excitatory connec-
tions between neurons.

The minimal model consists of somatic and dendritic
compartments. It is based on previous two-compartment
models of cortical neurons (Crook et al. 1998; Pinsky and
Rinzel 1994; Wang 1999). The somatic compartment con-
tains Hudgkin–Huxley type sodium and delayed rectifying
potassium conductances for spike generation (Hodgkin and
Huxley 1952), as well as a leak conductance. In addition,
we introduce both high-threshold and low-threshold potas-
sium conductances. The high-threshold potassium (KHT)
conductance is activated at high membrane potentials, and
provides re-polarizing currents during the spiking. KHT
conductance, as shown in rat hippocampal interneurons
(Lien and Jonas 2003), auditory neurons in medial nucleus
of the trapezoid body of mice (Wang et al. 1998), and
auditory neurons in avian nucleus magnocellularis (Rathouz
and Trussell 1998), enables the neuron to spike at high
frequency. The low-threshold potassium (KLT) conduc-
tance is introduced to account for the strong spike-
frequency adaptation observed in HVC(RA) neurons (Dutar
et al. 1998; Mooney et al. 2001; Mooney and Prather 2005;
Wild et al. 2005). KLT conductance has been shown to
produce a similar spike frequency adaptation in a number of
neuron types, including auditory neurons in avian nucleus
magnocellularis (Rathouz and Trussell 1998; Reyes et al.
1994), bushy cells in ventral cochlear nucleus (Manis and
Marx 1991), auditory neurons in the medial nucleus of the
trapezoid body of rats (Dodson et al. 2002) and mice (Wang

5While these statements are applicable for an idealized model of
sequence generation, a real neurobiological system might deviate
somewhat from the ideal, as detailed in Section 4.
6Figure 3(c) is actually the most general of the models, as both
Fig. 3(a and b) can be generated from it by deleting connections.

(a)

(b)

(c)

Fig. 3 Some synaptic connectivities suitable for sequence generation.
The connectivity of a neural network can be represented as a directed
graph. (a) A unidirectional chain of neurons. (b) A unidirectional
chain of groups. (c) A more general correlational model
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et al. 1998), and auditory neurons in the gerbil medial
superior olive (Svirskis et al. 2002). KLT conductance is
activated at subthreshold membrane potentials.

The dendritic compartment contains a leak conductance,
a high-threshold calcium conductance, and a calcium-
activated potassium conductance. The calcium and potassi-
um conductance enable a calcium spike in the dendrite if
depolarized over the threshold, as observed in dendrites of
many types of neurons, such as mammalian hippocampal
and cortical neurons, as well as cerebellar Purkinje neurons
(Golding et al. 1999; Hausser et al. 2000). Biophysical
plausibility of our model is ensured since the conductances
are taken from previous experimental data in other types of
neurons. In the man text, we have shown that this minimal
model also satisfies the other two guidelines.

The membrane potentials Vs and Vd of soma and dendrite
obey the following dynamical equations:

CmAs
dVs

dt
¼ AsðILs þ INa þ IK þ IKHT þ IKLT þ IFFsÞ

þ Iext þ Vd % Vsð Þ=Rc;

CmAd
dVd

dt
¼ Ad ILd þ ICa þ ICaK þ Isyn þ IFFd

! "

þ Vs % Vdð Þ=Rc:

Here Cm=1 μF/cm2 is the membrane capacitance, As=
100 μm2 and Ad=50,000 μm2 are the surface areas of the
soma and the dendrite, respectively. For the soma, ILs=
gLs(Er−Vs) is the leak current, with conductance gLs=
0.05 mS/cm2 and reversal potentialEr=−85 mV; INa=gNam

3&
h(ENa−Vs) is the sodium current, with conductance gNa=
100 mS/cm2, reversal potential ENa=55 mV, and gating
variables m and h; IK=gKn

4(EK−Vs) is the potassium
current, with conductance gK=2 mS/cm2, reversal potential
EK=−90 mV, and gating variable n; IKHT=gKHTw(EK−Vs) is
the high threshold potassium current, with conductance gKHT
=300 mS/cm2 and gating variable w. IKLT=gKLTl(EK−Vs) is
the low threshold potassium current, with conductance gKLT=
25 mS/cm2 and gating variable l; IFFs=−gFFsVs is the
feedforward excitatory input to the soma, with a constant
conductance gFFs; Iext is the external current injection to
soma; Rc=250 MΩ is the resistance of the connection
between soma and dendrite. For the dendrite, ILd=gLd(Er−
Vd) is the leak current with gLd=0.1 mS/cm2; ICa ¼
gCam2

1 ECa % Vdð Þ is the high threshold calcium current with
conductance gCa=200 mS/cm2, reversal potential ECa=
120 mV, and voltage dependent factor m∞=1/(1+exp(−(Vd−
20)/15)); ICaK=gCaKq(EK−Vd) is the calcium dependent
potassium current, with conductance gCaK=100 mS/cm2,
and calcium dependent variable q; Isyn=−gsynVd is the
excitatory synaptic current. Calcium concentration follows
a first order kinetics d[Ca2+]/dt=0.1ICa−[Ca2+]/τCa, with the

decay time constant τCa=100 ms. IFFd=−gFFdVd is the
feedforward excitatory to the dendrite, with a constant con-
ductance gFFd; The synaptic conductance follows a “kick-
and-decay” kinetics: gsyn→gsyn+G when a spike arrives
from another HVC(RA) neuron at a synapse with conduc-
tance G, and dgsyn/dt=−gsyn/τsyn in between spikes with
synaptic time constant τsyn=5 ms.

The general equation for the gating variables m, h, n is

dx
dt

¼ ax Vð Þ 1% xð Þ % bx Vð Þx;

where x=m, h, n. The voltage dependent coefficients of the
gating variables are:

αm ¼ %0:5 V þ 22ð Þ= exp % V þ 22ð Þ=10ð Þ % 1ð Þ;

βm ¼ 20 exp % V þ 47ð Þ=18ð Þ;

αh ¼ 0:35 exp % V þ 34ð Þ=20ð Þ;
βh ¼ 5= exp % V þ 4ð Þ=10ð Þ þ 1Þ;ð

αn ¼ %0:075 V þ 30ð Þ= exp % V þ 30ð Þ=10ð Þ % 1ð Þ;
βn ¼ 0:1 exp % V þ 40ð Þ=80ð Þ:

The general equation for the gating variables x=w, l, q is

dx
dt

¼ x1 Vð Þ % xð Þ=tx:

Here, w∞(V ) = 1/(exp(−V/5)+1), τw = 1 ms; l∞=1/(exp
(−(V + 40) /5) + 1), τl = 10 ms; and q∞( [Ca

2+]) = (0.0005
[Ca2+])2, τq([Ca

2+])=(0.0338)/(min(0.0001[Ca2+], 0.01)+
0.001). The kinetics of the gating variable q of the calcium
dependent potassium conductance is taken from Crook
et al. (1998).

The properties of the model neuron under current
injection to the soma are illustrated in Fig. 4, which shows
that the KLT conductance in the soma produces a strong
spike frequency adaptation as observed in the experiments
(Dutar et al. 1998; Mooney et al. 2001; Wild et al. 2005).
The key properties of the KLT conductance are that it is
large when the membrane potential is large and that it does
not inactivate. Figure 4(a) shows traces of subthreshold
somatic membrane potentials under step current injections.
For the largest inject current in the figure, a brief
subthreshold overshoot of the membrane potential can be
seen. This is because the activation of the KLT conductance
is slower than the rise of the membrane potential when the
magnitude of the step current is large. Activation of the
KLT conductance is also responsible for a sublinear
dependence of the equilibrium membrane potential on the
applied current, as shown in Fig. 4(b). The slow activation
of the KLT conductance permits a time window for
producing a few transient spikes with suprathreshold step
currents, as shown in Fig. 4(c). In this case, as the KLT
conductance becomes fully activated, the membrane poten-
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tial settles to an equilibrium plateau, and further spiking
is suppressed due to the large KLT conductance. The
number of transient spikes initially increases in steps with
the increasing inject current up to a maximum at about 8,
then decreases at very large inject currents due to depo-
larization block (Fig. 4(d)). The neuron never spikes reg-
ularly at any inject current due to the KLT conductance.

The high threshold potassium conductance helps the neuron
to spike at high frequency before the full activation of the
KLT conductance. When there is more than one spike, the
instantaneous spike frequency is about 400–800 Hz
(Fig. 4(e)), and the duration of the spike burst is on the
order of 2–13 ms (Fig. 4(f)), reflecting the activation time
scale of the KLT conductance (10 ms in the model). The
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Fig. 4 Strong spike frequency
adaptation of the two-compart-
ment HVC(RA) neuron shown
with somatic membrane poten-
tial responses under current
injections to soma. (a) Traces of
subthreshold membrane poten-
tials under step current injection
of 100 ms duration. (b) The
equilibrium value of the sub-
threshold membrane potential as
a function of the inject current.
(c) Traces of supra-threshold
membrane potentials under step
current injection of 50 ms. The
number of spikes is limited by
activation of the KLT current.
(d) Number of spikes as a
function of the inject step cur-
rent of 50 ms duration. (e)
Instantaneous spike frequency in
the condition of D. (f) Durations
of the spiking activity in the
condition of D. (g) Repeated
spiking of the neuron under
10 Hz triangular current pulses.
The width and the peak of the
pulse are 5 ms and 0.5 nA,
respectively. (h) When the
ramp-up in the triangular pulse
is slow (here at 20 ms), the KLT
current can prevent the neuron
from spiking
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model neuron can fire repeatedly under short current
pulses: 10 Hz triangular current pulses with 5 ms rise-time
can induce spikes at each pulse (Fig. 4(g)). This is due to a
faster rise of the membrane potential compared to the acti-
vation of KLT conductance at each pulse, and the reduction
of KLT conductance when the membrane potential returns
to the resting potential after each pulse. In contrast,
triangular pulses with 20 ms rise-time cannot make the
neuron spike, as shown in Fig. 4(h).

2.2 Single compartment model

To show how the strong spike-frequency adaptation and the
dendritic compartment contribute to robust propagation of
burst spikes, we also study spike propagation in networks
of the standard Hodgkin–Huxley model with a leak
conductance, fast sodium and potassium conductances,
and an additional KHT conductance. The properties of the
conductances are the same as in the two-compartment
model.

2.3 Noise injection

Noisy fluctuation of the membrane potential of each neuron
is induced by injection of Poisson spike trains to an
excitatory synapse (noise synapse) on the neuron. At each
noise spike arrival, the conductance added to the noise
synapse is randomly chosen from a range. The parameters
of the noise injection are chosen to make the membrane
potential to fluctuate with a standard deviation of approx-
imately 3 mV. Specifically, the frequencies and the
maximum conductances of the noise spike trains are:

200 Hz and 0.016 mS/cm2 for the two-compartment model,
injected to both the soma and the dendrite; 200 Hz and
0.031 mS/cm2 for the single compartment models.

2.4 Numerical integration

The dynamical equations are integrated numerically with a
fourth-order Runge–Kutta method (Press et al. 1992) using
a fixed time step of 0.01 ms. The computer code related to
the model is available upon request.

3 Results

3.1 Non-robust burst sequence generation

A complete model of burst sequences in HVC requires not
only synaptic connectivity, but also dynamical models of
action potential generation and synaptic transmission. In the
past, theorists have studied models of sequence generation
in which the output of a single neuron is binary-valued
(Amari 1972; Kleinfeld 1986), while others have used more
realistic spiking neuron models (Abeles 1982, 1991; Cateau
and Fukai 2001; Diesmann et al. 1999; Hermann et al.
1995). In our numerical simulations, we have used spiking,
conductance-based model neurons. This is because our goal
is to identify which intrinsic cellular properties of HVC
(RA) neurons are important in the generation of burst
sequences.

In the simulations of Fig. 5, we started with model
neurons lacking intrinsic bursting. These neurons were
modified, single compartment, Hodgkin–Huxley models
(see Section 2). The properties of the neuron under constant
conductance injection are shown in Fig. 5(a). The neuron is
regular spiking: it spikes more with larger injected
conductance.

The connections between HVC(RA) neurons are thought
to be glutamatergic since HVC(RA) neurons are projection
neurons that drive RA neurons. In our simulations, the time
constants of the synaptic conductances were 5 ms, which is
reasonable assuming that the AMPA-subtype of glutamate
receptor dominates the NMDA-subtype.

The synaptic strengths were chosen randomly between 0
and a maximal value gEEmax. This value was varied in the
different simulations of Fig. 5. Figure 5(b) shows the
dynamics for gEEmax=0.05 mS/cm2. A single spike was
stimulated in all neurons of the first group, via current
injection lasting 10 ms. Spiking of the first group caused all
neurons of the second group to fire a single spike. This
excited the third group, and so on down the chain. This
type of dynamics has been studied in the synfire chain
model (Abeles 1982; Cateau and Fukai 2001; Diesmann
et al. 1999; Hermann et al. 1995; Reyes 2003).

Fig. 5 Numerical simulations of sequence generation using model
neurons without intrinsic bursting. (a) The spiking output of the
neuron depends strongly on the amplitude and duration of the input.
Constant step excitatory conductance is injected to the neuron. The
voltage traces show the response of the neuron to several values of the
amplitude gFFs of the injected conductance. The number of spikes
versus gFFs is also plotted. (b) Voltages of selected neurons in the
network versus time. For gEEmax=0.05 mS/cm2 activity can propagate
through the chain, with each neuron spiking exactly once. The
neurons of the first group were stimulated to spike once with current
injections lasting 10 ms. (c) Runaway instability. The condition is the
same as in (b), except gEEmax=0.081 mS/cm2. Successive groups
produce more spikes. (d) Number of spikes per neuron versus gEEmax

(black line and circles), when single spikes are induced in the first
group. Also plotted is the maximum number of spikes in a neuron
excluding the first five groups (grey line). The divergence between the
grey and black lines indicates unstable propagation. (e) When each
neuron of the first groups was stimulated to spike eight times, burst
activity propagated through the chain for gEEmax=0.05 mS/cm2, with
each neuron spiking four time. Spike raster of 20 selected neurons are
also shown. (f) Number of spikes per neuron versus gEEmax (black line
and circle) and the maximum number of spikes in a neuron excluding
the first five groups (grey line), with the same stimulation condition as
in (e). Runaway excitation occurs when gEEmax>0.07 mS/cm2

R
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Similar behavior was observed for a range of synaptic
strengths, gEEmax=0.03 to 0.07 mS/cm2. Above this range
( gEEmax>0.07 mS/cm2), runaway excitation occurred, as
shown in Fig. 5(c). Moving downstream along the chain,
each group of neurons spiked for a longer duration than the
one before. This type of activity pattern is inconsistent with
the bursts observed in HVC, which are of fairly uniform
duration. Figure 5(d) shows the dependence of the number
of spikes per neuron on gEEmax, averaged over the entire
chain, as well as the maximum number of spikes observed
in a neuron. In the unstable regime, the maximum number
of spikes far exceeds the averaged number of spikes.

It is also possible to obtain propagation of bursts through
the network, rather than single spikes. Figure 5(e) shows
this phenomenon. To initiate burst propagation, we stimu-
lated eight spikes in neurons of the first group, via current
injection lasting 10 ms. Bursting of the first group excited
the second group, which excited the third group, and so on.
Every burst in the sequence consisted of four spikes. Note
that the burst of a group begins before the burst of the
previous group ends. Three to four spikes per burst resulted
for a small range of synaptic strength, gEEmax=0.04 to
0.05 mS/cm2. However, this parameter range was also close
to a runaway instability, as shown in Fig. 5(f ).

Burst sequence generation with neurons lacking intrinsic
bursting thus suffers two problems. One is sensitivity to the
initial conditions. For a given connection strength, either
single spikes or bursts can propagate, depending on how
the neurons in the first group are stimulated.7 The other is
that the runaway excitation limits the range of the synaptic
strength that can support burst propagation even with the
controlled initial conditions.

The model neuron used in these simulations has a high-
threshold potassium conductance to enhance its ability to
spike at high rates. Even if this conductance is removed, the
runaway instability remains. The model neuron has class II
spiking behavior (i.e. the minimum frequency of the regular
spiking regime is non-zero) (Hodgkin 1948; Rinzel and
Ermentrout 1989), but similar results are obtained for
neurons with class I spiking behavior (i.e. the neuron can
spike regularly at arbitrarily low frequencies).

The problem of runaway instability can be solved in
many different ways. Spike frequency adaptation, synaptic
depression, or/and recurrent inhibition have all been
proposed to stabilize the propagation of spikes through
excitatory synaptic connections (Cateau and Fukai 2001;

Diesmann et al. 1999; Ermentrout 1998; Golomb and
Amitai 1997; Kistler 2000; Kistler and Gerstner 2002;
Osan et al. 2004; Traub et al. 1993). In the next section, we
propose another solution: intrinsically bursting model
neurons. This mechanism also eliminates the sensitivity to
the initial conditions.

3.2 Intrinsic bursting

Figure 5(a) depicts the model neuron without intrinsic
bursting mechanisms. With the right synaptic input, a burst
of several spikes can be stimulated. Note that the number of
spikes generated in the burst depends strongly on the
amplitude and duration of the input. Therefore it is not
surprising that the number of spikes per burst depended
sensitively on the synaptic strengths in the network
simulations of Fig. 5.

An intrinsically bursting model neuron is shown in
Fig. 6. Our model is inspired by previous experimental and
modeling results on cortical and hippocampal neurons
(Schwindt and Crill 1999; Traub et al. 1994; Wong and
Stewart 1992). Both somatic and dendritic voltages are
modeled, along with dendritic calcium concentration. If
synaptic input to the dendrite exceeds a threshold, a
dendritic spike is initiated. The dendritic spike is caused
by positive feedback between voltage and voltage-gated
calcium channels, so it is also appropriate to use the term
“calcium spike.”

A calcium spike in the dendrite sends current into the
soma, producing sodium spikes. Because calcium dynamics
is relatively slow, the calcium spike has a longer duration
than a typical sodium spike. Therefore, a burst of several
spikes is produced.

Here the most significant point is the stereotypy of the
somatic response to a dendritic spike, as shown in Fig. 6(a).
If the synaptic input is below the threshold for generation of
a dendritic spike, it is not strong enough to initiate a
somatic spike. If the synaptic input is suprathreshold,
varying its amplitude and duration causes little change in
the somatic spiking pattern.8 The reason is that most of the
current driving somatic spiking comes from the calcium
spike; the synaptic current has little direct effect. Further-
more, the calcium spike is a stereotyped event, because it is
caused by active dendritic processes.

Because of the stereotypy of the burst of somatic spikes,
it is plausible that a network composed of intrinsically
bursting neurons can produce HVC-like activity with little

7If the connection strength supports a stable propagation of single
spikes, it is possible to propagate any number of spikes per neuron by
inducing long spike trains at low frequency in the neurons of the first
group (data not shown). Such propagation however does not agree
with the observed short high frequency (about 600 Hz) bursts of
spikes in HVC(RA) neurons (Hahnloser et al. 2002).

8The number of spikes decreases slightly with the increase of the
synaptic input to the dendrite (Fig. 6(a)). This is because the reversal
potential of the calcium current (120 mV) is much larger than that of
the synaptic current (0 mV). Increasing the synaptic input thus slightly
decreases the strength of the calcium spike.

J Comput Neurosci



need for fine tuning. This will be demonstrated in the next
section.

Another important feature of the dendritic spike is its
long refractory period. In Fig. 6(b), the dendrite receives
three identical synaptic inputs, spaced by 80 ms intervals.
Although the first input causes a dendritic spike, the second
and third fail to do so. This is because calcium concentra-
tion decays slowly after the dendritic spike, and activates a
calcium-dependent potassium current, which reduces the
excitability of the dendrite. As will be seen in the next
section, the long refractory period also contributes to
prevention of runaway instability.

It should be noted that there is presently no published
evidence for dendritic calcium spikes in HVC(RA) neurons.
We predict that this phenomenon will be found (see
Section 4).

3.3 Robust burst sequence generation

We simulated a network of intrinsically bursting model
neurons, with the synaptic connectivity of Fig. 3(b). Some
simulated burst sequences are shown in Fig. 7(a). Each
burst of somatic spikes rides on top of a “plateau” in
voltage. The plateau is due to current generated by the
dendritic spike. In effect, dendrites use somatic spikes to

communicate with each other. If we considered only
somatic spike times, the activity of this model would
look very similar to the activity shown in Fig. 5. How-
ever, the model is very different, because the fundamental
propagating event is the dendritic spike, not the somatic
spike.

Intrinsic bursting gives the model improved robustness.
If gEEmax is varied, the number of spikes per burst varies
from 4 to 6 (Fig. 7(c)). As explained before, this is because
a burst is a stereotyped event. Furthermore, there is no
runaway instability. The stereotypy of the calcium spike
makes the neural response insensitive to the synaptic in-
puts. This prevents amplification of the activity during the
propagation. The long refractory period of the dendritic
spike also contributes to the stability by suppressing con-
secutive activations of the dendrtic spikes.

3.4 Strong spike frequency adaptation

Our model neuron has another important feature, which is
that the burst of somatic spikes has a shorter duration than
the calcium spike (see Fig. 6(a)). The somatic spikes
terminate because the soma has a low threshold potassium
(KLT) conductance, which strongly dampens excitability
when the soma is depolarized.
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Fig. 6 The dendritic mecha-
nism of burst generation in the
two-compartment model of
HVC(RA) neuron. (a) The
spiking output of the neuron
depends only weakly on the
amplitude gFFd and duration of
constant excitatory conductance
input on the dendrite. Somatic
voltage, dendritic voltage, and
dendritic calcium concentration
are shown. Input conductance to
the dendrite causes a dendritic
spike, which drives a burst of
somatic spikes. (b) The dendritic
spike has a long refractory peri-
od. Only the first synaptic input
in a series of three is able to
activate a dendritic spike. The
vertical bars indicate the times
of excitatory synaptic inputs to
the dendrite
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Our use of a KLT conductance is inspired by Dutar et al.
(1998), who used sharp electrodes to record from HVC
(RA) neurons in brain slices from adult zebra finches.
They found that HVC(RA) neurons responded with just
one or two spikes to sustained current injection. They also
noted that the strong spike frequency adaptation might be

due to a rapidly activating potassium conductance. Indeed,
the KLT conductance has been shown to lead to a similar
spike response in a number of other neuron types, in-
cluding auditory neurons in avian nucleus magnocellularis
(Rathouz and Trussell 1998; Reyes et al. 1994), bushy cells
in ventral cochlear nucleus (Manis and Marx 1991), audi-
tory neurons in medial nucleus of the trapezoid body of
rats (Dodson et al. 2002) and mice (Wang et al. 1998), and
auditory neuron in gerbil medial superior olive (Svirskis
et al. 2002).

Whether a KLT conductance is likewise the mechanism
of spike frequency adaptation in HVC(RA) neurons is
presently unknown. Our model cannot resolve this issue;
further experiments are needed. The point of our model is
different: it proposes a possible function for spike
frequency adaptation, regardless of its biophysical mecha-
nism. Adaptation allows the duration of somatic spiking to
be shorter than the duration of the dendritic calcium spike.
This is an important feature, since the typical burst of
sodium spikes in HVC(RA) neurons during singing is just
6 ms (Hahnloser et al. 2002), whereas the dendritic calcium
can last tens of milliseconds if the hypothetical calcium
spikes in dendrities of HVC(RA) neurons are similar to
calcium spikes in cortical and hippocampal neurons. In our
model, the short burst duration is set by the properties of
the KLT conductance.

3.5 Robustness of intrinsic bursting

If the neurons are intrinsically bursting, the need for
fine-tuning of synaptic strengths is removed from our
model. However, one might ask whether fine-tuning of
intrinsic cellular properties is necessary to achieve the
proper burst duration and number of spikes per burst. To
investigate this issue, we experimented with varying
parameters of the model dendrite. Figure 8 shows the
effect of these manipulations on the number of spikes per
burst.

Figure 8(a) shows how the spike number depends on the
coupling resistance Rc between the dendritic and somatic
compartments, and the total dendritic area Ad. All other
parameters are left at their default values. The spike number
is insensitive to Ad. The dependence on Rc is stronger, but
there is a reasonable range of values yielding more than
three spikes.

Figure 8(b) plots the dependence of the number of
somatic spikes on the conductances gCa and gCaK of
calcium channels and calcium-activated potassium chan-
nels, respectively. There is a large parameter regime in
which the spike number is 5 or 6.

The problem of how excitable cells regulate their
conductances to achieve dynamical behaviors is a fascinat-
ing one. The problem is not peculiar to our model of HVC,
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Fig. 7 Robust propagation of burst spikes in networks of the HVC
(RA) neurons with active dendrites. (a) Traces of somatic membrane
potentials of five selected neurons in a run of the dynamics. The
connections between the neurons are made to the dendrites. (b) Spike
raster of 20 selected neurons. (c) Average number of spikes per neuron
versus the connection strength gEEmax
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but is relevant to just about any neural system. It seems
likely that such regulatory mechanisms exist (Davis 2006).
Figure 8 suggests that such mechanisms would not have to
tune parameters very precisely to achieve the required
bursting behavior.

4 Discussion

In conclusion, we have described a theory of burst
sequences in HVC(RA) neurons that is based on two main
hypotheses. Hypothesis 1 is that the connectivity between
HVC(RA) neurons is correlational, i.e., based on temporal
correlations in their activity. Hypothesis 2 is that HVC(RA)
neurons are intrinsic bursters.

4.1 Correlational connectivity

Hypothesis 1 makes a clear prediction: two HVC(RA)
neurons that burst in succession should be connected by an
excitatory synapse, with high probability. While this
hypothesis is easy to state, the only direct experimental
tests that one can imagine are very difficult. For example,
one could perform dual intracellular recordings of pairs of
HVC(RA) neurons in singing birds. One could test whether
the neurons are connected, and then compare their burst
timings. To a neurophysiologist, this experiment already
sounds extremely difficult. To make things worse, con-
nections between HVC(RA) neurons are likely to be very
sparse. In our numerical simulations, we used 200 groups
of neurons. If a pair of neurons is chosen randomly from
our model, its probability of being connected is less than
1%. Therefore, our model predicts that it would be difficult
to find connected pairs by simply recording randomly from
neurons.9

If HVC were spatially organized, the experimental situa-
tion would be more favorable. For example, suppose that
neurons that burst simultaneously were at the same location
in HVC. Then it would be much easier to find connected
pairs of neurons. However, no such spatial organization has
been detected so far (Fee, unpublished observations).

An alternative to the neurophysiological approach
mentioned above is a purely anatomical approach. Recent-
ly, new high-throughput anatomical techniques have been
invented (Denk and Horstmann 2004; Tsai et al. 2003). In
particular, automated serial-section electron microscopy
could potentially allow the reconstruction of the entire
synaptic connectivity of HVC. If HVC were found to have
a connectivity similar to one of those shown in Fig. 3, this
would be strong evidence for Hypothesis 1.

To some, Hypothesis 1 may seem so intuitively obvious
that its truth must be a foregone conclusion. But this is not
the case, as competing models for sequence generation
have been proposed. For example, Estes argued that
sequential order is determined by inhibitory synaptic
connectivity, not excitatory connectivity (Estes 1972).

4.2 Intrinsic bursting

We have shown that intrinsic bursting enhances the robustness
of burst sequence generation by a neural network. According
to our Hypothesis 2, HVC(RA) neurons are intrinsic bursters.
How strong is this prediction? It is consistent with the
observation that the spontaneous bursts of HVC(RA) neuron
during sleep have the same stereotypy as during singing

9While Mooney and Prather reported synaptic interactions between
pairs of HVC(RA) neurons in vitro (Mooney and Prather 2005), it is
not clear whether these connections were monosynaptic.
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(Hahnloser et al. 2002, 2006). While intrinsic bursting is one
solution to the problem of robustness, it is not the only one.
Other biophysical mechanisms could also improve robust-
ness, such as spike frequency adaptation, synaptic depres-
sion, and recurrent inhibition (Cateau and Fukai 2001;
Diesmann et al. 1999; Ermentrout 1998; Golomb and Amitai
1997; Kistler 2000; Kistler and Gerstner 2002; Osan et al.
2004; Traub et al. 1993). While our theoretical arguments are
suggestive, they are not conclusive. Ultimately, this issue can
only be settled by experiment.

In previous experiments in vitro, it has been found that
somatic current injection does not trigger intrinsic bursting
in HVC(RA) neurons (Dutar et al. 1998; Kubota and
Taniguchi 1998; Mooney 2000; Wild et al. 2005). This may
sound inconsistent with our Hypothesis 2, but actually it is
not, for two reasons. First, somatic current injection is an
indirect way of testing for a dendritic spike. In our model, it
may or may not trigger a calcium spike in the dendrite. This
depends on model parameters like the strength of coupling
between the soma and dendrite, and the voltage threshold
for a dendritic spike. Second, the intrinsic properties of
HVC(RA) neurons appear to be different in vitro and in the
brain of a singing bird. For example, the peak firing rates
observed in vitro are never as high as those observed during
song (Dutar et al. 1998; Kubota and Taniguchi 1998).
Perhaps HVC(RA) neurons in vitro are missing some
neuromodulator that is necessary for the intrinsic properties
appropriate for song-related activity, and this neuromodu-
lator could have effects on intrinsic bursting.

Given these facts, one can imagine a number of ways of
testing Hypothesis 2. Drugs that affect voltage-gated
calcium channels or calcium-activated potassium channels
could lower the threshold for a dendritic spike, and permit
the initiation of a burst by somatic current injection. Further-
more, such drugs could change burst duration or spike
number during song in vivo. In addition, glutamate un-
caging could be used to stimulate dendrites directly, as
has been done with cortical neurons (Schiller et al. 2000;
Wei et al. 2001). Also in vivo imaging of calcium dynamics
in dendrites could be revealing (Euler et al. 2002;
Trachtenberg et al. 2002).

4.3 Spike frequency adaptation

We have argued that strong spike frequency adaptation in
HVC(RA) neurons could function to make burst duration
shorter than the duration of the hypothetical dendritic
calcium spike. However, we should make the caveat that
there is some disagreement about the strength of spike
frequency adaptation in HVC(RA) neurons. Kubota and
Taniguchi (1998) found weaker spike frequency adaptation
in HVC(RA) neurons, which in their experiments produced
many spikes in response to sustained current injection.

Perhaps their results were different from Dutar et al. (1998)
because they used patch electrodes rather than sharp
electrodes and juvenile rather than adult birds.

Therefore we should also consider the alternative sce-
nario in which spike frequency adaptation is only a weak
effect, and has little effect on burst duration. In this sce-
nario, the dendritic calcium spike itself has short duration,
unlike calcium spikes seen in cortical and hippocampal
neurons (Golding et al. 1999; Schwindt and Crill 1999; Wei
et al. 2001).

In short, two scenarios should be considered: burst dura-
tion could be set by the time course of the dendritic spike,
or by somatic spike frequency adaptation. These possibil-
ities can be tested pharmacologically by applying drugs that
affect calcium dynamics or spike frequency adaptation and
observing the effects on burst duration during song.

4.4 Refractory period

In our model, the dendritic spike has a long refractory
period, due to the slow decay of calcium and the calcium-
dependent potassium current (Fig. 5(b)). Previously we
argued that the refractory period could function to prevent
runaway instability.

Here we mention another possible effect: the refractory
period could enhance robustness to sloppiness in the
connectivity of the HVC(RA) neurons. In our idealized
model, if neuron A bursts after neuron B, there is no
synaptic connection from A to B. In Fig. 3, this dependence
on temporal order is reflected in the fact that there are only
“forward” connections, and no “backward” connections.
However, even if there were some backward connections,
they would have no effect on propagation of bursts through
the network, because they would deliver synaptic input to
neurons only while their dendrites are refractory. Therefore,
some sloppiness in the connectivity can be tolerated.

Note that burst propagation would be possible in the
models of Fig. 3, even if the connectivity were truly bidi-
rectional, with equal numbers of forward and backward
connections. Then propagation in either direction would be
possible, so that the bird could sing its song either forward
or backward.10 Since this is not observed, it seems more
likely that the connectivity is biased in the forward direction.

4.5 Inhibition

In our model, we neglected the influence of HVC(I)
neurons on HVC(RA) neurons. We argued that this was a

10Bidirectional propagation is standard for most excitable media. For
example, an axon can support either orthodromic or antidromic
propagation of an action potential, though only the orthodromic is
seen in natural conditions.
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good approximation because the spiking of HVC(I) neurons
is much less temporally selective, and therefore their input
to HVC(RA) neurons can be approximated as constant in
time. We suspect that interneurons lack temporal selectivity
because they sum the outputs of many projection neurons.
Because the projection neurons are active at a wide variety
of times, the sum of their outputs is temporally unselective.

While inhibition is not expected to determine the
temporal order in which projection neurons are activated,
it may have the function of regulating the overall level of
activity of the projection neurons. In other words, inhibition
could be a circuit mechanism that prevents runaway
instability, in addition to the cellular mechanisms that have
been discussed previously.

4.6 Learning

Suppose that HVC(RA) neurons possess a correlational
connectivity, like those of Fig. 3. How could this
connectivity be created during learning or development?

The simplest possibility would be spatial organization.
Suppose that the HVC(RA) neurons were arranged so
that their temporal selectivities progressed in an orderly
fashion across HVC. Then if synaptic connections were
local in space and biased in one direction, they would
conform to Fig. 3. However, as mentioned previously, no
such spatial organization has been detected in HVC(RA)
neurons thus far.

The obvious alternative is that Hebbian synaptic plastic-
ity could create correlational structure. This idea has been
popular in models of associative memory, in which synaptic
strengths are given by correlation matrices. The idea was
proposed for temporal sequences in particular by Amari
(1972).

4.7 Previous models of HVC sequence generation

In a previous model of sequence generation by HVC,
Troyer and Doupe proposed that sequences are generated
by an associative chain of motor and sensory representa-
tions (Troyer and Doupe 2000), where the motor represen-
tation resides in the HVC(RA) neurons and the sensory
representation is an efference copy in the HVC(X) neurons.
The sequence is generated by reciprocal excitatory inter-
actions between the HVC(RA) and HVC(X) neural pop-
ulations. In contrast, we have argued that the associative
chain is within the HVC(RA) population itself, and does
not involve the HVC(X) neurons. Support for this idea
comes from the fact that targeted destruction of HVC(X)
neurons does not cause deterioration of song in adult zebra
finches (Scharff et al. 2000). Accordingly, we believe that
there are excitatory synapses from HVC(RA) to HVC(X)
neurons, but not vice versa (see Fig. 2).

Drew and Abbott proposed a model of sequence
generation in HVC (Drew and Abbott 2003). In the model,
HVC neurons are driven with a common periodic input.
The sequential firing of the neurons arise from chained
inhibitory connections between neurons, disinhibition, as
well as strong afterhyperpolarization currents that prevent
neurons to spike repeatedly in short time. Their work is
closely related to the general model of sequence generation
proposed by Estes (1972). Although there is some evidence
of sporadic timed inputs from Uva (Vu et al. 1994;
Williams and Vicario 1993), it has not been demonstrated
that there are timing signals with high enough resolution to
drive sequential burst of spiking lasting about 6 ms. Our
model does not require a timing signal inputs. The timing
arises from the excitatory connectivity between the neu-
rons. However our model does require an external input to
start the spiking activity in the first group.

In their model of birdsong learning, Doya and Sejnowski
(1999) took the HVC activation patterns as given. They did
not address the mechanism of sequence generation in HVC.

4.8 Synfire chains

Spiking network models utilizing the connectivity of
Fig. 3(b) are often called synfire chains. Should this term
also be applied to the present model? The answer to this
question depends on the exact definition of the term.
Typically synchronous spiking of one group of neurons is
required to drive the next group over threshold in a synfire
chain. Having a high threshold for spiking helps to make
the dynamics robust to noise. Also, each neuron in a group
generates a single spike, so that the precise timing of this
spike is clearly important. On the other hand, suppose that
each neuron generates a burst of more than one spike, and
synapses must temporally integrate successive spikes to
drive the next group of neurons above threshold. In this
case, the spiking of neurons in a group must still occur
within a window that is set by the synaptic integration time.
However, the width of this window is longer than the
interspike interval during a burst, so it is not clear whether
this qualifies as precise synchrony.

In our model of burst sequences, the dendritic calcium
spike is the fundamental propagating event, rather than the
somatic sodium spikes. Therefore, the term synburst chain
might be more appropriate.11

11Another ambiguity of definition arises when considering the
connectivity of Fig. 3(c). In this model, the connectivity is uni-
directional but the neurons are not divided into groups. Here the spike
times of the neurons will not cluster into groups, but are expected to
be fairly uniformly distributed in time. Nevertheless, synchronous
(within a synaptic integration time) spiking may be required for
propagation of activity. It is not clear whether this should be called a
synfire chain.
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