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Abstract. Temporally complex stimuli are encoded into spatiotemporal spike
sequences of neurons in many sensory areas. Here, we describe how downstream
neurons with dendritic bistable plateau potentials can be connected to decode
such spike sequences. Driven by feedforward inputs from the sensory neurons
and controlled by feedforward inhibition and lateral excitation, the neurons
transit between UP and DOWN states of the membrane potentials. The neurons
spike only in the UP states. A decoding neuron spikes at the end of an input
to signal the recognition of specific spike sequences. The transition dynamics is
equivalent to that of a finite state automaton. A connection rule for the networks
guarantees that any finite state automaton can be mapped into the transition
dynamics, demonstrating the equivalence in computational power between the
networks and finite state automata. The decoding mechanism is capable of
recognizing an arbitrary number of spatiotemporal spike sequences, and is
insensitive to the variations of the spike timings in the sequences.
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1. Introduction

Meanings of temporally complex stimuli such as speech are embedded in patterns over time.
Sensory neurons in areas such as the primary auditory cortex [1, 2] and the retina [3, 4]
detect stimulus features within short time windows, and spike reliably whenever their preferred
features appear. Different features are preferred by different sensory neurons. A stimulus that
varies over a time span much longer than the time windows of the features drives spatiotemporal
sequential spikes in the sensory neurons. Thus, a population of sensory neurons encode complex
temporal stimuli into spatiotemporal spike sequences [5]. How the brain’s neural networks read
out such codes is an important unsolved problem [6]–[14].

In this paper, we propose a decoding mechanism based on the spiking dynamics of
biological neural networks. We note that spatiotemporal spike sequences are analogous to
text strings: assigning a unique letter to each sensory neuron (or to each group of sensory
neurons that detect the same feature) transforms the spike sequences into strings of these letters
(figure 1). Decoding spatiotemporal spike sequences can thus be done similarly to recognizing
written words. Finite state automata (FSA) are powerful mathematical models of machines that
recognize a class of written words that belong to regular languages [15, 16]. We show that the
spiking dynamics of networks of neurons with transient bistable dendritic plateau potentials,
which produce UP and DOWN states of the membrane potentials, can behave like FSA for
decoding spatiotemporal spike sequences. Transitions between the UP and DOWN states are
controlled by feedforward excitations and inhibitions from the sensory neurons, as well as
lateral excitations between the neurons in the networks. A general connection rule is shown
to ensure the mapping of any finite state automaton to the transition dynamics of the network.
Our networks have the same computational power as FSA, and can recognize spatiotemporal
spike sequences as complex and general as all text strings recognizable by FSA.

Our mechanism is biologically realistic. Transient bistable dendritic plateau potentials are
observed in cortical neurons [17, 18]; lateral excitation, feedforward excitation and feedforward
inhibition are general features of cortical microcircuitry [19]. This is unlike previous studies
on relating neural computations to FSA, which were mostly performed on artificial neural
networks [20]. There are other biologically plausible mechanisms of recognizing temporal
patterns, such as those based on tapped delay lines [8], synaptic depression [9], detection of
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Figure 1. Transformation of spatiotemporal spike sequences into text strings.
The sensory neurons are labeled with letters. Driven by time-dependent stimuli,
the neurons spike at different times, indicated by the vertical bars. Such
spatiotemporal spike sequences are analogous to text strings.

synchrony [10], transient network dynamics [11], or single neuron integration [13, 14]. Our
mechanism is distinguished by its ability to process temporal patterns of arbitrary length,
its tolerance of the timing variations of the input spikes, and its capability of recognizing,
if necessary, an infinite number of patterns with common characteristics. It is an extension
of our previous work on a similar mechanism that could recognize only a finite number of
spatiotemporal spike sequences [12]. FSA is a key part of the Turing machine that is capable
of universal computation [15], and also has been widely used in engineering systems such
as natural language processing and speech recognition [16]. Our mechanism is a concrete
demonstration that biological neural networks are computationally at least as powerful as FSA.

2. FSA

A FSA consists of a finite number of discrete states. Among them, one is designated as the start
state, one or more as the end states and one as the ground state φ. Driven by sequential input
letters from an alphabet, the FSA changes its states according to a transition table that decides
the next state given the current state and input letter. A string of input letters may drive the FSA
to one of the end states starting from the start state. If so, the string is said to be ‘recognized’
by the FSA. Otherwise, the string is said to be ‘rejected’. An example of a FSA that recognizes
words in a ‘sheep language’ (strings starting with b, followed by one or more a’s and ending
with !) [16], is shown in figure 2. Consider a string baaaa!. At the beginning, the FSA is in S1,
the start state; b induces a transition from S1 to S2; the first a from S2 to S3; subsequent a’s from
S3 to S3 and finally, ! from S3 to S4; since ! is at the end of the input and S4 is an end state, the
string is recognized. It is easy to see that the a’s in between b and ! can be any number larger
than zero, and all such ‘sheep words’ are recognized. Consider any string that starts with a.
From S1, a induces a transition to the ground state φ, and the FSA stays in this state regardless
of the subsequent inputs, thus S4 is not reached at the end and the string is rejected. Similarly, a
string like bbaaa! is rejected because the FSA goes to φ after the second b. Incomplete sheep
words such as baaa are also rejected since at the end the state is S3 not S4. The FSA rejects all
strings that are not sheep words.
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Figure 2. Finite state automaton that recognizes words in a ‘sheep language’
(strings of the form ba . . . a!). The automaton consists of five states. In the
diagram, an arrow indicates transition from one state to the next upon receiving
the input letter indicated near the arrow. The ground state φ and transitions to
it are not shown. The start state S1 is indicated with an incoming arrow with
no source, and the end state S4 is indicated with double circles. The complete
transition rule is shown in the table. S4 is reached if and only if the input string
is a word in the sheep language, such as baaa!. The automata thus recognizes
words in the sheep language, and rejects all other words such as babba!aa.

A key to the FSA computation is the AND operation. From a given state, the FSA can go to
different states depending on the input. For instance, the sheep language automaton goes from
S3 to S3 if the input is a, to S4 if ! and to φ if b. Recognition of specific strings are through the
transitions based on the state and input pairs. The ground state φ is a special state; once a FSA
goes to that state, it remains there. Reaching the ground state at any point of an input signals
rejection. The end state can be reached during an input; but if it is not reached at the end, the
input is still rejected.

3. Neuron model

Experiments on excitatory neurons in the hippocampus [17] and the neocortex [18] demonstrate
that a strong, excitatory, short (around 5ms) pulse delivered at a distal branch of a dendrite
can make the membrane potential of the branch go to a plateau potential that is transiently
stable for 50–100ms. This plateau potential then drives the membrane potential of the soma
to a state that is depolarized about 10mV above the resting potential of the neuron. We refer
to this transiently sustained depolarized state as the UP state. Without the dendritic plateau
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potential, the membrane potential stays near the resting potential. This is referred to as the
DOWN state. A strong inhibitory input to the dendrite in the plateau potential can transit the UP
state to the DOWN state. Our mechanism of decoding spatiotemporal spike sequences relies
on these properties of cortical neurons. The idea is that the UP state corresponds to a state
in FSA.

A common approach of modeling a neuron with dendritic structure is to approximate
segments of the dendrites and soma as compartments that are connected according to the
morphology of the neuron, each compartment described by its own membrane potential, ion
channels and synaptic inputs. Such a model can be complex, with numerous compartments and
detailed distributions of ion channels [21], if the aim is to accurately describe the morphological
and biophysical properties of single neurons. Our goal here is different. We aim to show how
dendritic plateau potentials can be utilized for decoding spike sequences with neural networks.
We therefore choose to construct a simple multi-compartment model that incorporates only the
neuron properties essential for our mechanism.

Our model of an excitatory neuron consists of a soma and five distal dendrites (the
number of dendritic compartments is not critical). The dendrites are connected to the soma
with ohmic conductance. The soma is a leaky integrate-and-fire unit: it generates a spike when
its membrane potential exceeds a threshold. After the spike, the membrane potential resets to a
reset potential, and remains there for a refractory period of 5ms. The soma also contains A-type
potassium conductance [22, 23], which is activated near the resting potential and inactivated
at more depolarized potentials. This conductance enhances the robustness of our recognition
mechanism. The dendrite is a leaky integrator as well, but does not generate spikes. All
compartments have alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and
gamma-amino-butyric-acid (GABA) synaptic conductances, which mediate synaptic excitation
and inhibition, respectively. A dendritic compartment also has N-methyl-D-aspartate (NMDA)
synaptic conductance (excitatory), whose nonlinear dependence on the dendritic membrane
potential leads to a transient bistable plateau potential that drives the UP state of the soma [17].
The properties of the excitatory neuron model are shown in figure 3.

All synaptic conductances follow a ‘kick-and-decay’ dynamics. The decay time constants
of AMPA and GABA conductances are 5ms, while that of NMDA is 100ms; the latter
determines how long the UP state is sustained without further inputs. At the time of a spike
arrival, the conductance of a synapse that receives the spike increases by an amount equal to
the strength of the synapse. In between spikes, the synaptic conductance decays exponentially.
Noisy fluctuations of the membrane potentials are induced by random excitatory and inhibitory
spike inputs at the soma and the dendrites. Unless specified otherwise, we set the somatic and
dendritic membrane potentials to fluctuate with 1mV standard deviation. The mathematical
details of the excitatory neuron model and the synaptic dynamics are given in the appendix.

We model an inhibitory neuron as a single compartment quadratic integrate-and-fire
neuron [12, 24], on which the AMPA time constant is small (1ms). It is capable of responding
with a short latency to an excitatory spike input (figure 4(B)). The details of the model can be
found in [12]. The AMPA conductance on the inhibitory neuron is set to 0.6; there is no NMDA
conductance.

All synaptic and ion conductances are scaled with the leak conductances of the
corresponding compartments.
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Figure 3. Properties of single excitatory neuron model. (A) The neuron consists
of somatic and dendritic compartments. (B) Response profiles of the membrane
potential Vs of the soma when injected with a constant current Is in the soma at
three levels. (C) UP and DOWN states of the membrane potentials. A brief exci-
tatory input to a dendrite, when weak, leads to a brief and small depolarization
of both the dendritic (Vd) and somatic (Vs) membrane potentials (DOWN state).
When the input is strong, the membrane potentials sustain large depolarized
plateau potentials (UP state). (D) The UP state is driven by a nonlinear current
mediated through NMDA conductance in the dendrite. Several curves of the net
current in the dendrite as a function of the membrane potential Vd, with different
levels of NMDA conductances, are plotted. When the NMDA conductance is
large, there are two stable equilibrium membrane potentials (arrows).

4. Network implementation of FSA

For any given FSA, we can wire the neurons in the following way to make the spiking dynamics
of the network isomorphic to the FSA.

The number of states in the FSA equals the number of excitatory neurons. State Si of the
FSA is represented with neuron Ni in the UP state. The ground state φ corresponds to all neurons
in the DOWN states.

For each letter in the alphabet of the FSA, there is one sensory neuron (or one group of
sensory neurons) whose spikes indicate the detection of a distinctive feature (the neuron or the
group is labeled with the letter). In addition, there is a ‘start neuron’ s that detects the beginning
of a sensory input, and an ‘end neuron’ e that detects the end. A spike from a sensory neuron
corresponds to a letter input to the FSA.
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Figure 4. The connectivity and properties of the inhibitory neuron. (A) The
inhibitory neuron (shaded) sends connections to the soma (synaptic strength G5)
and all dendrites (G4) of every excitatory neuron. It receives inputs from all
sensory neurons. (B) The inhibitory neuron spikes once with 2ms delay to each
spike input from the sensory neurons. The times of the input spikes are shown
with vertical bars, and the membrane potential of the inhibitory neuron is plotted.

The state transitions are implemented through a network structure that agrees with observed
microcircuitry of cortical neural networks [19]. All sensory neurons excite an inhibitory neuron,
which in turn inhibits the somata (synaptic strength G5) and dendrites (G4) of all excitatory
neurons (figure 4(A)). The inhibitory neuron spikes once with a delay of 2ms at each input
spike, thus providing a global feedforward inhibition to all dendrites and somata time-locked to
each sensory spike (figure 4(B)). Sensory neurons also selectively send feedforward excitatory
inputs to the somata (G1) and the dendrites (G2) (figure 5). Excitatory neurons selectively
connect to the dendrites (G3) to provide lateral excitation (figure 5). A dendrite is connected
by at most one sensory neuron and one excitatory neuron. G1 is in a range such that an input
spike to the soma makes the neuron spike if it is in the UP state but not in the DOWN state;
G2 and G3 are such that a dendrite cannot jump to the plateau potential if it receives only one
spike from either a sensory neuron or an excitatory neuron, but can if it receives both; G4 is
large enough for a feedforward inhibitory spike to turn off the plateau potential at a dendrite in
all cases except when the dendrite receives both feedforward and lateral spikes.

The AND operation Si × h → Sj , which means transition from Si to Sj if the input is h,
is implemented by connecting sensory neuron h to the soma of neuron Ni , and both h and Ni
to a dendrite of neuron Nj . There are no other excitatory connections to the dendrite. If Ni is
in the UP state and h spikes, the dendrite goes to the plateau potential and makes Nj go to the
UP state. Meanwhile, unless i = j , all dendrites of Ni are set to the resting potential due to the
feedforward inhibition, and Ni returns to the DOWN state. This completes the operation.

At any moment, at most one neuron is in the UP state, and at most one dendrite of the
neuron is in the plateau potential because different dendrites get inputs from different pairs of
sensory and excitatory neurons.

The time intervals between input spikes are restricted to a range, since the transition
between the UP and DOWN states takes a finite amount of time, and the UP state decays to
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Figure 5. The network that decodes spatiotemporal spike sequences
corresponding to the words in the sheep language. Sensory neurons, at the
bottom, are labeled with their preferred features (s and e detect the start and
end of the inputs). The inhibitory neuron and its connections are not shown.
The somata and dendrites of the excitatory neurons are labeled with N and
D, respectively. The dots at the end of the connection lines (axons) indicate
synapses, red for the feedforward excitation to soma (synaptic strength G1),
orange for the feedforward excitation to dendrite (G2), green for the lateral
excitation to dendrite (G3) and yellow for the input from the start neuron (G0).
Axons of sensory neurons a, b, !, s and e are indicated with blue, green, purple,
gray and black, respectively. N4 spikes at the end if and only if the sensory
neurons spike in the sequence sbaa . . . a!e.

the DOWN state spontaneously if the interval is too long. We set the range from 30 to 80ms.
The start neuron s connects only to a dendrite of N1 with synaptic strength G0 (figure 5), which
is strong enough to produce the plateau potential despite the feedforward inhibition. A spike
from s makes N1 go to the UP state, and the network is in the start state S1. The end neuron e
connects to the somata of all neurons corresponding to the end states. When e spikes, one of
these end state neurons spikes if it is in the UP state, indicating recognition of the input spike
sequence. The recognition is signaled by the coincident spiking of e and an end state neuron.
Spiking of the end state neurons before e spikes does not count.

The values of the synaptic strengths can be searched in the following way. Firstly,
determine the range of G1 by requiring that a feedforward input spike should not make the
neuron spike in the DOWN state but should in the UP state. The A-current in the soma, which is
inhibitory, is active in the DOWN state but inactive in the UP state; this makes the range of G1
large. Secondly, determine the lower limit for G4. It must be large enough so that a spike from
the inhibitory neuron can terminate the dendritic plateau potential and the UP state. Thirdly, for
a value of G4 beyond the lower limit, determine a range for G2 and G3 using two requirements:
(1) they should be small enough so that a feedforward excitatory spike or a lateral spike alone
cannot prevent the inhibitory spike from shutting down the plateau potential; (2) they should be
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large enough so that a feedforward excitatory spike and a lateral excitatory spike together can
produce the plateau potential from the resting potential despite the inhibition. Setting G2 = G3
simplifies the search process. Fourthly, G0 is set to a large enough value to produce a plateau
potential when s spikes. Finally, the role of the inhibition to the soma is to reduce the possibility
that a neuron spikes during the transition from the DOWN to UP states due to the transient
excitations at the dendrites, which can be large if G2 and G3 are large; G5 is set accordingly.
We have confirmed that there is a wide range of the parameters satisfying these criteria. For the
rest of the paper, we set G1 = 2.5,G2 = G3 = 3,G4 = 5,G5 = 5 and G0 = 5.

5. The sheep language network

In figure 5, we show the network that implements the sheep language FSA (figure 2) and
recognizes the spatiotemporal spike sequences that are analogous to the sheep words. There
are four excitatory neurons, labeled N1 to N4, whose UP states correspond to the states S1 to
S4. The network receives spike inputs from five sensory neurons, s, a, b, ! and e. One inhibitory
neuron mediates global feedforward inhibition; it receives inputs from all sensory neurons and
connects to all somata and dendrites of the neurons (not shown in the figure). s is connected
to a dendrite D11 of N1; this corresponds to the start arrow in the FSA transition diagram.
b connects to the soma of N1 and a dendrite D21 of N2, which also receives a connection from
N1; this implements S1 × b → S2. a connects to the soma of N2 and a dendrite D31 of N3, which
also gets a connection from N2; this corresponds to S2 × a → S3. a also connects to the soma
of N3 and another dendrite D32, which gets an autaptic connection from N3; this implements
S3 × a → S3. ! connects to the soma of N3 and a dendrite D41 of N4, which is connected from
N3; this is S3×!→ S4. Finally, e connects to the soma of N4, the end state neuron.

In figure 6(A), we illustrate the spiking dynamics of the network driven by input spike
sequence sbaaaa!e, which is analogous to the word baaaa! in the sheep language. The intervals
between the input spikes are randomly chosen between 30ms and 80ms. The input sequence
successively turns on the UP states in N1, N2, N3, N3, N3, N3 and N4, and at the spike from e,
N4 spikes, indicating recognition of the input spike sequence.

From S3, the sheep language FSA stays in S3 if the input is a, goes to S4 if the input is !.
In the network, the corresponding transitions are done through activations of different dendrites
depending on the sources of the excitatory spikes. The soma of N3 gets input from both a and !,
thus can spike in the UP state if the input spike is from either a or !. However, a and ! connects
to different dendrites: a to D32 of N3 and ! to D41 of N4. D32 and D41 are also connected from
N3. Thus, the input from a induces D32 to the plateau state and N3 stays in the UP state, whereas
the input from ! induces D41 to the plateau state and N4 to the UP state. The dendrites hence
implement the AND operations, and play a critical role in directing the network from the same
state to different states with different inputs. It is easy to see that the network recognizes any
input spike sequence of the form sba . . . a!e, which are analogous to the words in the sheep
language.

The network rejects all spike sequences that are not analogous to the words in the sheep
language. An example is shown in figure 6(B), in which the input sequence is sba!bae. The
first three spikes sba! of the sequence successively produce the UP states in N1, N2, N3 and
N4. However, the next input is from b, which does not send a connection to the soma of N4.
At this input, none of the excitatory neurons spike and hence none of the dendrites get a lateral
excitation; N4 returns to the DOWN state due to the feedforward inhibition, and the network

New Journal of Physics 10 (2008) 015010 (http://www.njp.org/)

http://www.njp.org/


10

N1

N2

N3

N4

40 ms

20
 m

V(A) (B)Recognized
Rejected

s eb a a a a ! s eb a ! b a

40 ms

20
 m

V

N1

N2

N3

N4

Figure 6. Somatic membrane potentials of the excitatory neurons in the network
shown in figure 4, driven by input spike sequence (A) sbaaaa!e and (B) sba!bae.
The lines at the bottom mark spike timings of the sensory neurons. In (A), N4
spikes when e spikes, indicating recognition of the input spike sequence; in (B),
it does not, indicating rejection.

goes to the ground state. Subsequent spike inputs cannot make any of the neurons go to the UP
state, and the network remains silent. In particular, the spike from e does not make N4 spike. The
input sequence sba!bae is thus rejected. Similar reasoning shows that all non-sheep-language
sequences, such as sbbbaaba!!e, are rejected. Hence, the spiking dynamics of the network
shown in figure 5 is isomorphic to the FSA shown in figure 2.

6. Parity checking network

Even with a small number of neurons, our network can detect spike sequences with nontrivial
characteristics. Consider a case of spike sequences from two sensory neurons a and b. The task
is to recognize all sequences that contain odd numbers of spikes from both a and b, and reject
all others. Two spike sequences can differ by only one spike, for instance sbabbe and sbabbae;
yet one should be recognized and the other rejected. The order of the spikes does not matter.

For text strings, this parity-checking task can be solved with a FSA with four states, as
shown in figure 7(A). The start state S1 goes to S2 with input b, to S4 with a; S2 goes to S1 with
b, to S3 with a; S3 goes to S2 with a, to S4 with b and S4 goes to S3 with b, to S1 with a. From
the state transition diagram it is easy to deduce that the end state S3 is reached at the end only if
the input string contains odd numbers of a and b.

The corresponding network is shown in figure 7(B), which is wired by implementing the
FSA following the rule described previously. In figure 8(A), we show the dynamics of the
network with input sbbbbaaaabbabbbaae, which contains 7 a’s and 9 b’s. N3 spikes when
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Figure 7. A finite state automaton that checks the parity of input strings
consisting of a and b. (A) The state transition diagram. The end state S3 is
reached at the end of the input if and only if the input string contains odd
numbers of a and b, for example, aababb. (B) The network corresponding to
the automaton in (A). The convention is the same as in figure 5.

e does, indicating the recognition of the sequence. In figure 8(B), we show the case with input
sababaaaabbbaabbe, which contains 8 a’s and 7 b’s. N3 does not spike when e does, indicating
the rejection.

The network can tolerate noisy fluctuations in the membrane potentials of the neurons
to some extent. To show this, we vary the maximum strengths Gsoma,noise and Gdendrite,noise
of the random noise spikes, while keeping the standard deviations of the fluctuations in the
soma and dendrites the same. For each noise level, defined as the standard deviation of the
somatic membrane potential during a period of no sensory inputs, we generate 500 random spike
sequences of a and b. The sequences are uniformly sampled from all possible ones containing
1–10 spikes of a and b. The intervals between the spikes are randomly selected from 30 to
80ms, as before. We compute the percentage of recognitions of the sequences that should be
recognized, and the percentage of rejections of the sequences that should be rejected. The results
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Figure 8. Somatic membrane potentials of the excitatory neurons in the network
shown in figure 7(B), driven by input spike sequence (A) sbbbbaaaabba-
bbbaae, which contains 7 a’s and 9 b’s and (B) sababaaaabbbaabbe, contain-
ing 8 a’s and 7 b’s. The lines at the bottom mark spike timings of the sensory
neurons. In (A), N3 spikes when e spikes, indicating recognition of the input
spike sequence; in (B), it does not, indicating rejection.

are shown in figure 9. The network performance is perfect up to a noise level about 1mV.
Beyond this level, the rate of false positive (recognizing a sequence that should be rejected) and
the rate of false negative (rejecting that should be recognized) go up. The rate of false positive
tends to grow faster with the noise compared to the rate of false negative. This reflects the fact
that with large noise, neurons tend to spend more time in the UP states, and the end state neuron
spikes readily when e does.
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Figure 9. Performance of the parity checking network shown in figure 7(B) as a
function of the noise level, defined as the mean of the standard deviations of the
somatic membrane potentials of the excitatory neurons when there are no sensory
inputs. The black line indicates the percentage of correct responses to the spike
sequences that should be recognized, and the grey line is for the sequences that
should be rejected.

7. Discussion

We have shown that biologically realistic neural networks can behave like FSA to decode
spatial temporal spike sequences. The states of the networks consist of the UP states of neurons
sustained by plateau potentials in the dendrites. The transitions between the states are controlled
by feedforward excitation, lateral excitation and feedback inhibition. Coincident inputs of
feedforward and lateral excitations are required for producing plateau potentials at the dendrites.
This corresponds to the AND operation in FSA. Any FSA can be mapped into an equivalent
network. Thus, the ability of our networks in recognizing spatiotemporal spike sequences is the
same as that of FSA in recognizing text strings. One network can recognize an unlimited number
of sequences with common characteristics, as demonstrated by the sheep language network and
the parity checking network. The intervals between the spikes in the sequences can vary within
a large range. Thus, the networks can handle uneven temporal warping of sensory inputs.

Our mechanism relies on transitions between network states for temporal integration. This
is similar to previous proposals that used short-term synaptic depression [9] or transient network
dynamics [11] for imprinting the temporal information of inputs to the network states. Unlike
these proposals, however, our mechanism is capable of integration over arbitrarily long time,
since the dynamics of our networks is stable due to the binary nature of the plateau potentials
and the tight inhibitory control of the transitions. In principle, any network dynamics might
be related to FSA; however, such a relationship is often at best speculative or implicit. Our
mechanism is explicitly understood in terms of FSA.

We have used a single neuron to represent one state. A simple extension is to replace each
neuron with a group of neurons. In this case, state transitions are accompanied by synchronous
spiking of the neurons representing the same states. Since the role of individual neurons is
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reduced, the networks should be more resistant to noise in single neurons. The same can be
done with the inhibitory neuron. With a group of inhibitory neurons, the feedforward inhibition
is accomplished by their synchronous spikes at each sensory input; random spiking of an
inhibitory neuron does not matter. Replacing each sensory neuron with a group likewise should
increase the robustness of the sensory inputs against noise.

Transitions between bistable membrane potentials are widely observed in cortical
pyramidal neurons in vivo [25]–[27]. We propose that such state transitions in single neurons can
be utilized to integrate temporal information. In our networks, spikes of the excitatory neurons
occur near the UP to DOWN state transitions, although they can also be absent during the
transitions. Whether this is true in the cortical neurons remains to be seen. This prediction
should be modified if a state is represented with a group of neurons rather than a single neuron,
which might be more realistic. In this case, the neurons representing the same state should spike
synchronously during the UP to DOWN state transitions; random spiking of the neurons in the
UP states can be allowed.

The beginning and end of a sensory input are signaled with the start and end sensory
neurons, respectively. These boundary detecting neurons are similar to the ON and OFF neurons
found in sensory areas such as the retina [4, 28] and the auditory cortex [29, 30]. In our sequence
detecting networks, the neurons corresponding to the start and end states in FSA are connected
by the start and end sensory neurons, respectively, and these specific connections are the only
characteristic that distinguishes the start and end state neurons from others in the networks. The
coincident spiking of the end sensory neurons and the end state neurons signals the recognition
of a input spike sequence. The neurons in the networks have a wide range of input selectivity:
while a start state neuron spikes whenever there is a sensory input, an end state neuron usually
spikes only to highly complex input patterns. Other neurons have intermediate selectivity.

Our model of the excitatory neuron is quite simple, and only crudely approximates the
complex dendritic structures of cortical neurons. Moreover, the model lacks the wealth of ionic
conductances found in the dendrite and soma of cortical neurons, as well as neurotransmitters
that can help to stabilize the UP states [26]. A more elaborate neuron model might improve the
robustness of our networks against noisy fluctuations.

In our networks, the interneuron has highly convergent inputs and highly divergent outputs.
It spikes reliably with a short latency to the inputs from the sensory neurons. Inhibitory neurons
with these properties have been found in the somatosensory cortex [31]. Although we rely on
feedforward inhibition for controlling the state transitions, it is possible to also include feedback
inhibition, often found in cortical microcircutry, as done in our previous work [12]. This should
widen the range of the synaptic strengths that make the networks function properly [12].

An unresolved issue is how the specific connections between the excitatory neurons
and those from the sensory neurons to the dendrites of the excitatory neurons might be set
through experience. In computer science, learning FSA through examples is an active research
area [32]. Such research might inspire biologically plausible mechanisms of learning the specific
connectivity for recognizing a given set of spatiotemporal spike sequences.
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Appendix

The mathematical details of the excitatory neuron model are as follows. The dynamics of the
membrane potential Vs of the soma is

τs
dVs
dt

= Er − Vs + gds
N∑

j=1
(Vd j − Vs)+ Is + IA + Iext,

and that for the j th dendrite Vd j ( j = 1–5) is

τd
dVd j
dt

= Er − Vd j + gsd(Vs − Vd j)+ Id j .

Here, τs = 20ms and τd = 10ms are the membrane time constants of the soma and the dendrites,
respectively; Er = −70mV is the resting membrane potential; gds = 1.0 is the conductance
from dendrite to soma and gsd = 0.05 is that from soma to dendrite. Note that the unit of all
conductances on the soma is the somatic leak conductance, and that of those on the dendrite is
the dendritic leak conductance. The synaptic current on the soma is given by

Is = −gAs(t)Vs − gGs(t)(Vs − EI),
where gAs and gGs are the AMPA and GABA conductances, and EI = −75mV is the reversal
potential of inhibitory synapses (the reversal potential of excitatory synapses is 0mV). The
A-type potassium current in the soma is given by

IA = −gAa∞(Vs)3b(t)(Vs − EK),
where gA = 10 is the conductance; EK = −90 is the reversal potential of potassium current; the
activation variable a∞ is given by

a∞(Vs) = 1
1 + exp(−(Vs + 70)/5)

and the inactivation variable b is determined by

τA
db
dt

= −b + 1
1 + exp((V + 80)/6)

,

with τA = 5ms. The kinetics of the A-current is modified from Shriki et al [23]. Iext is an external
current injected to the soma, and is set to zero except in figure 3(B) to show the soma property.

The synaptic current on the dendrite is given by

Id j = −gAd j(t)Vd j − gGd j(Vd j − EI) − gNd j(t)Vd j
1 + exp(−(Vd j + 30)/5)

.

Here, besides the AMPA and GABA conductances gAd j and gGd j , there is also a NMDA
conductance gNd j through which flows nonlinear excitatory current responsible for the transient
bistable plateau potential, as shown in figure 3(D).

In between spikes, all synaptic conductances decay exponentially. The decay time
constants for AMPA and GABA conductance are both 5ms, that for NMDA conductance
is 100ms. A spike arriving at an excitatory synapse with strength G on the soma leads to
gAs → gAs +G, and that to an inhibitory synapse leads to gGs → gGs +G. On the j th dendrite, a
spike to an excitatory synapse leads to gAd j → gAd j +G and gNd j → gNd j +αG, where α = 5.0
is the ratio of NMDA and AMPA conductances on the dendrite. There is a saturation of the
NMDA conductance; gNd j is not allowed to go beyond 10.0.
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The soma generates a spike if Vs > Vth = −54mV, and resets Vs to the reset potential
Vr = −64mV, and keeps Vs = Vr for a refractory period of 5ms. The dendrite does not generate
spikes. Noisy fluctuations of the membrane potentials are induced by random excitatory and
inhibitory spike inputs at the soma and the dendrites. In each compartment, the random
excitatory spike times are generated according to a Poisson process with a rate of 200Hz;
the same for the random inhibitory spikes. The synaptic strength at each random excitatory
or inhibitory spike is randomly selected from 0 to Gsoma,noise in the soma and 0 to Gdendrite,noise in
the dendrite. Unless specified otherwise, we set Gsoma,noise = 0.3 and Gdendrite,noise = 0.07, which
makes the somatic and dendritic membrane potentials fluctuate with 1mV standard deviation.
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