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Abstract

Songs of many songbird species consist of variable sequences of a finite number of syllables. A common approach for
characterizing the syntax of these complex syllable sequences is to use transition probabilities between the syllables. This is
equivalent to the Markov model, in which each syllable is associated with one state, and the transition probabilities
between the states do not depend on the state transition history. Here we analyze the song syntax in Bengalese finch. We
show that the Markov model fails to capture the statistical properties of the syllable sequences. Instead, a state transition
model that accurately describes the statistics of the syllable sequences includes adaptation of the self-transition
probabilities when states are revisited consecutively, and allows associations of more than one state to a given syllable.
Such a model does not increase the model complexity significantly. Mathematically, the model is a partially observable
Markov model with adaptation (POMMA). The success of the POMMA supports the branching chain network model of how
syntax is controlled within the premotor song nucleus HVC, but also suggests that adaptation and many-to-one mapping
from the syllable-encoding chain networks in HVC to syllables should be included in the network model.
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Introduction

Complex action sequences in animals and humans are often

organized according to syntactical rules that specify how actions are

strung together into sequences [1,2]. Many examples are found in

birdsong. Songs of birdsong species such as Bengalese finch [3–5],

sedge warbler [6], nightingale [7], and willow warbler [8] consist of

a finite number of stereotypical syllables (or notes) arranged in

variable sequences. Quantitative analysis of the action syntax is

critical for understanding the neural mechanisms of how complex

sequences are generated [1,3,5,9,10], and for comparative studies of

learning and cultural transmissions of sequential behaviors [11].

Pairwise transition probabilities between syllables are widely

used to characterize variable birdsong sequences [3,4,7,8]. This is

equivalent to using the Markov model to capture the statistical

properties of the syllable sequences. The Markov model is a

generative statistical model of sequences, and consists of a set of

states. Here the states are mathematical abstractions; they can

correspond to concrete neural substrates in specific neural

mechanisms of birdsong generation. There is a start state and an

end state, which correspond to the start and the end of the

sequences, respectively. For each syllable, there is one correspond-

ing state. A state sequence starting from the start state and ending

at the end state is produced through probabilistic transitions from

one state to the next, and the corresponding syllable sequence is

generated. The transition probabilities between the states depend

only on the state pairs, and are set to the observed pairwise

transition probabilities of the associated syllables. More sophisti-

cated models allow chunks of fixed syllable sequences to be

associated with state transitions, with a possibility that a syllable

appears in different chunks [5,12,13]. However, no detailed

statistical tests of these state transition models have been

performed, and their validity as quantitative descriptions of the

birdsong syntax remains unclear.

In this paper, we analyze the songs of Bengalese finch. We

demonstrate that the Markov model fails to capture the statistical

properties of the observed sequences, including the repeat number

distributions of individual syllables, the distributions of the N-

grams (sequences of length N) [14] and the probability of

observing a given syllable at a given step from the start of the

sequences. We introduce two modifications to the Markov model

and show that the extended model is successful in describing the

syntax of the Bengalese finch songs. The first modification is

adaptation. Syllable repetitions are common in the Bengalese finch

songs. Allowing the repeat probabilities of syllables to decrease

with the number of repetitions leads to a better fit of the repeat

number distributions. The second modification is many-to-one

mapping from the states to the syllables. A given syllable can be

generated by more than one state. Even if the transitions between

the states are Markovian, the syllable statistics are not Markovian

due to the multiple representations of the same syllables. The

resulting model, which we call a partially observable Markov

model with adaptation (POMMA), has history-dependent transi-

tion probabilities between the states and many-to-one mappings

from the states to the syllables. The POMMA successfully

describes the statistical properties of the observed syllable

sequences. It is consistent with the branching chain network

model of generating variable birdsong syntax, in which syllable-
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encoding chain networks of projection neurons in the premotor

song nucleus HVC are connected in a branching topology [10,15].

Results

Spontaneous vocalizations of two Bengalese finches were

recorded in an acoustic chamber using a single microphone over

six (Bird 1) and five (Bird 2) days, respectively. Vocal elements

(n~25365, Bird 1; n~15032, Bird 2) were isolated from the

recorded pressure waves (Materials and Methods). In the

following, we first present the analysis of Bird 1 and then Bird 2.

The songs of Bird 1
For Bird 1, the vocal elements were clustered into 25 types

according to the similarities of their spectrograms (Materials and

Methods). We identified seven types of vocal elements as song

syllables (Figure 1a, n~4625,3145,2835,2154,1408,723,1356 for

syllables A to G, respectively). The rest were call notes (14 types; 7

examples shown in Figure 1b; C1 and C2 were the the most

frequent call notes with n~2200,918, respectively) and noise. The

song syllables were distinguished by rich structures in the

spectrograms and tight distributions of the durations

(s:d:=mean~0:08+0:04), (Figure1a), and frequently appeared

together in long sequences (sequence length mean ~8:5+4:9)

with small inter-syllable gaps (v200ms) (Figure 1c–d). The gaps

between the consecutive syllables were filled with silence or small

noisy fluctuations; no call notes or unidentified vocal elements

were in them. In contrast, the call notes had broad or simple

spectra and more variable distributions of the durations

(s:d:=mean~0:17+0:05), and appeared in short sequences

(sequence length mean ~2:7+1:5). All consecutive sequences of

the song syllables with inter-syllable gaps smaller than 200ms were

assigned as song sequences. Additionally, syllable E (Figure 1a),

which predominantly appeared at the start of the sequences

obtained above, was assigned as a start syllable such that whenever

syllable E appeared for the first time and was not following

another E, a new song sequence was started. Thus, a long

sequence containing k non-continuous E’s in the middle was

Figure 1. Spectrograms and song sequences (Bird 1). a. Spectrograms of song syllable types. b. Spectrograms of call types. The durations of
the syllable and call types are shown on top of the spectrograms. c. Spectrogram of an example song. Syllable types are shown on top. The duration
of the song measured from the start of the first syllable to the end of the last syllable is 1.4s. d. Examples of the syllable sequences. The frequency
range of the spectrograms are 1-10kHz.
doi:10.1371/journal.pcbi.1001108.g001

Author Summary

Complex action sequences in many animals are organized
according to syntactical rules that specify how individual
actions are strung together. A critical problem for
understanding the neural basis of action sequences is
how to derive the syntax that captures the statistics of the
sequences. Here we solve this problem for the songs of
Bengalese finch, which consist of variable sequences of
several stereotypical syllables. The Markov model is widely
used for describing variable birdsongs, where each syllable
is associated with one state, and the transitions between
the states are stochastic and depend only on the state
pairs. However, such a model fails to describe the syntax of
Bengalese finch songs. We show that two modifications
are needed. The first is adaptation. Syllable repetitions are
common in the Bengalese finch songs. Allowing the
probability of repeating a syllable to decrease with the
number of repetitions leads to better fits to the observed
repeat number distributions. The second is many-to-one
mapping from the states to the syllables. A given syllable
can be generated by more than one state. With these
modifications, the model successfully describes the
statistics of the observed syllable sequences.

Song Syntax of Bengalese Finch
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broken into k+1 song sequences. Altogether, we ended up with

1921 song sequences. Sequences of call notes can precede or

follow song sequences, and these call notes were considered to be

introductory notes.

The Markov model
A simple statistical model of the song sequences is the Markov

model, which is completely specified by the transition probabilities

between the syllables. For each syllable, there is a corresponding

state; additionally, there is a start state (symbol s) and an end state

(symbol e), as shown in Figure 2a. We computed the transition

probability pij for the state Si associated with syllable i to the state Sj

associated with syllable j, from the observed song sequences as the

ratio of the frequency of the sequence ij over the total frequency of

syllable i. Transitions with small probabilities (pij,0.01) were

excluded.

To evaluate how well the Markov model describes the statistics

of the observed song sequences, we generated 10000 sequences

from the model, and compared three statistical properties of the

generated sequences and the observed sequences. The method of

sequence generation is as follows. From the start state, one of three

states SC ,SE ,SD associated with syllables C, E, D can follow with

probabilities psC~0:037, psE~0:625, psD~0:338, respectively

(Figure 2a). A random number r is uniformly sampled from 0 to 1.

If rvpsC , SC is selected (the state following the start state is

S1~SC ), and the generated sequence starts with C. If

Figure 2. The Markov syntax of the syllable sequences (Bird 1). a. The Markov model. The pink oval represents the start state. The end state is
not shown. The cyan ovals are the states with finite probabilities of transitioning to the end state. The numbers near the transition lines indicate the
transition probabilities. b. Examples of syllable sequences generated from the Markov model. c. The Markov model with adaptation. The numbers in
parenthesis are the adaptation parameter a. d. Examples of syllable sequences generated from the Markov model with adaptation.
doi:10.1371/journal.pcbi.1001108.g002
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psC v r v psC z psE , SE is selected (S1~SE ), and the sequence

starts with E. If psC z psE v r v psC z psE z psD~1, SD is

selected (S1~SD), and the sequence starts with D. From the

selected state S1, the next state S2 can be selected similarly

according to the transition probabilities from S1. This process of

sampling random numbers and selecting the next state and syllable

is continued until the end state is reached, generating a specific

syllable sequence. Examples of the generated syllable sequences

are shown in Figure 2b.

The first statistical property to be compared was the distribution

of the syllable repeats. Except syllable F, all syllables appeared in

repetitions, and the number of repeats were variable. For each

syllable, we constructed the probability distribution of the repeat

numbers by counting the frequencies of observing a given number

of repeats in the observed song sequences. The distributions are

shown as black curves in Figure 3a. We also constructed the repeat

number distributions from the sequences generated from the

Markov model. These are shown as cyan curves in Figure 3a. For

syllables E and G, the comparisons are favorable. However, for

other syllables the distributions clearly disagree. To quantify the

difference between two distributions f1(x) and f2(x), we defined

the maximum normalized difference d, which is the maximum of

the absolute differences divided by the maximum values in the two

distributions, i.e. d~ maxx jf1(x){f2(x)j=max (f1(x),f2(x)). The

d-values for syllables A, B, C, D, E are 0:84,0:16,0:65,
0:63,0:007,0:0011, respectively. The major difference is that, for

syllables A, C, D, the observed distributions peak at repeat number

4, 2, 2, respectively, while the generated distributions are

decreasing functions of the repeat numbers. Indeed, if the

probability of returning to state S from itself is a constant p, the

probability of observing n repeats of the associated syllable is

Pn~pn{1(1{p), which is a decreasing function of n. Therefore

the Markov model is incapable of producing repeat number

distributions having maxima at nw1.

The second statistical property to be compared was the N-gram

distribution. An N-gram is a fixed subsequence of length N. For

example, syllable sequences EC and AA are 2-grams; ECC and

AAA are 3-grams; etc. We constructed the probability distribu-

tions for 2- to 7-grams in the observed song sequences by counting

the frequencies of a given subsequence. The results are shown in

Figure 4a as black curves, with the N-grams sorted according to

decreasing probabilities. We also computed the probability

distributions of the corresponding N-grams in the generated

sequences. The results are shown in Figure 4a as cyan curves. The

distributions for 2-grams agree very well, which is expected, since

the Markov model was constructed with the transition probabil-

Figure 3. Comparisons of the repeat distributions for syllables A,B,C,D,E,G (Bird 1). The black curve in each graph is from the observed
syllable sequences. a. Comparison to the distributions from the Markov model (cyan curves). b. Comparison to the distributions from the Markov
model with adaptation (green curves). c. Comparison to the distributions from the POMMA (red curves). The differences between the model and the
observed curves are indicated with the d-values above each graph.
doi:10.1371/journal.pcbi.1001108.g003
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ities, which are equivalent to the 2-gram distributions. The

distributions are quite different for 3- to 7-grams, with d-values

ranging from 0.26 to 0.93 (Figure 4a).

The final statistical property to be compared was the step

probability of the syllables, which is defined as the probability of

observing a syllable at a given step from the start. The step

probabilities for all syllables computed from the observed song

sequences, as well as the step probability of the end symbol e,

which describes the probability of observing that a sequence has

ended at or before a given step, or equivalently, the cumulative

distribution function of the sequence length, are plotted as black

curves in Figure 5a; and those from the generated sequences are

plotted as cyan curves. The comparison for syllable E is quite good

(d~0:005). But the differences between the probabilities for other

syllables and the end symbol e are large, as indicated by the d-

values ranging from 0.11 to 0.61.

Because the number of the observed song sequences is finite,

even a perfect statistical model that would exactly reproduce the

Bengalese finch songs cannot lead to zero d-values when compared

to the observed distributions. One way of assessing the goodness of

fits is to use benchmarks for the d-values created from the observed

syllable sequences. We split the observed sequences into two

groups by randomly assigning each sequence with a probability

0.5. One group is considered as generated by a perfect statistical

model and compared against the other group. For each group we

computed the repeat number distributions, the N-gram distribu-

tions, and the step probability distributions. The distributions from

the two groups were compared to obtain the d-values. We

performed the random splitting 500 times and constructed

distribution profiles for each d-value. These profiles characterized

the fluctuations of the d-values due to the finite number samplings

of the observed sequences. For each d-value, we chose the p~0:95
point in the profile as the benchmark. This means that the

probability that the d-value is smaller than the benchmark is 0.95.

The benchmarks are plotted as gray vertical bars in Figure 6. A

good statistical model of the syllable sequences should produce d-

values smaller than the benchmarks or close to them. The d-values

obtained from the Markov model, plotted as the cyan curves in

Figure 6, are mostly far beyond the benchmarks. It is clear that the

Markov model fails to capture the statistical properties of the songs

of Bird 1.

The Markov model with adaptation
One way of extending the Markov model is to allow the

transition probabilities to change depending on the state transition

history. There are many possible formulations of such depen-

dence. Adaptation, in which the transition probabilities are

reduced as the state transitions are repeatedly revisited, is one

Figure 4. Comparisons of the N-gram distributions (Bird 1). a. The Markov model. b. The Markov model with adaptation. c. The POMMA. The
conventions are the same as in Figure 3.
doi:10.1371/journal.pcbi.1001108.g004
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Figure 5. Comparisons of the probabilities of finding the syllables and the end (denoted with e) at a given step from the start (Bird
1). a. The Markov model. b. The Markov model with adaptation. c. The POMMA. The conventions are the same as in Figure 3.
doi:10.1371/journal.pcbi.1001108.g005

Figure 6. Summary of the differences between the model-generated and observed distributions (Bird 1). The d-values are shown for all
distributions. Cyan curves are from the Markov model, green curves from the Markov model with adaptation, and the red curves from the POMMA.
The gray bars are the benchmarks obtained from the observed syllable sequences charactering the d-values expected due to the finite size of the
samples. a. The repeat distributions. b. The N-gram distributions. c. The probabilities of observing syllables and the end in a given step from the song
start.
doi:10.1371/journal.pcbi.1001108.g006
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formulation motivated by the observation that repeated activations

of synapses and neurons reduce their efficacy [16–18].

Ideally, all transition probabilities should be subject to

dynamical changes depending on the histories of the state

transitions in the Markov model. But such a model is difficult to

analyze. We therefore considered a simple model in which only

the return probabilities of the states from themselves are adaptive.

In particular, the return probability pr of a state is reduced to

pr~anp after nth repetition of the associated syllable. The

transition probabilities to all other states are mutiplied by a factor

(1{anp)=(1{p) to keep the total probability normalized. Here

0vav1 is the adaptation parameter, and p is the return

probability when n~1. The probabilities recover to original

values once the dynamics moves on to other states. In this Markov

model with adaptation, the probability of observing n repetitions is

given by Pn~a(n{2)(n{1)=2pn{1(1{an{1p) (Materials and Meth-

ods). We fitted the parameters a and p for the states with self-

transitions in the Markov model (Figure 2a) using the repeat

number distributions in the observed song sequences. The

resulting model is shown in Figure 2b, which is identical to the

Markov model (Figure 2a) except that the return probabilities for

the states associated with syllables A, C, D, E are adaptive, with

a~0:84,0:6,0:35,0:81, respectively. Fittings for syllables B and G

did not lead to an adaptive model (a~1), so the associated return

probabilities are unchanged.

To evaluate the Markov model with adaptation, we again

generated 10000 song sequences and compared the repeat number

distributions, the N-gram distributions, and the step probabilities

to the observed song sequences. The generation procedure was the

same as in the original Markov model, except that the return

probabilities were adaptive as prescribed above. The repeat

number distributions, shown as green curves in Figure 3b, are

much improved compared to the Markov model. In particular, the

peaked distributions of syllables A, C, D are well reproduced. This

demonstrates that the adaptation is capable of producing peaked

repeat number distributions. Adaptation did not improve the

comparisons of the N-gram distributions (Figure 4b). Adaptaion

improved the comparisons of the step probabilities for syllables C,

D, F but not for syllables A, B, D and the end symbol e (Figure 5b).

The d-values (green curves in Figure 6) compared to the

benchmarks confirm these observations. The Markov model with

adaptation is a better statistical model for song sequences of Bird 1

than the Markov model; however, it is still not capable of

accurately describing all statistical properties.

Partially Observable Markov Model With Adaptation
(POMMA)

In the Markov model and its extension with adaptation, each

syllable is associated with one state. Hence the number of states is

equal to the number of the syllables, plus two if we count the start

and end states (we will exclude the start and end states when we

count the number of states in a model). However, it is possible that

there is more than one state corresponding to one syllable. This

many-to-one mapping from the states to the syllables enables the

state transition models to describe more elaborate statistical

properties of syllable sequences [10]. With the many-to-one

mapping, the number of states can be larger than the number of

syllables. When this is the case, some of the states are ‘‘hidden’’,

and cannot be simply deduced by counting the number of syllable

types. This kind of model is often referred to as ‘‘partially

observable Markov model’’ (POMM) [10,19], and is a special case

of the hidden Markov model (HMM) in which each state is

associated with a single symbol. We tested whether introducing

many-to-one mapping in addition to the adaptation, which leads

to a ‘‘partially observable Markov model with adaptation’’

(POMMA), would better explain the statistical properties of the

observed song sequences.

To derive a POMM from observed sequences, we developed a

state merging method, in which the sequences are translated into a

POMM with tree transition structure, and the states are merged if

they have equivalent statistical properties and deleted if they are

rarely reached (Materials and Methods). To incorporate adapta-

tion to syllable repetitions, we first derived a POMM with the non-

repeat versions of the song sequences, in which the repeats of

syllables were ignored but the number of repeats were recorded.

For example, the non-repeat version of a song sequence

ECCDDFBBGBAA is E(1)C(2)D(2)F(1)B(2)G(1)B(1)A(2), where

the repeat numbers are in the parenthesis. While creating the

tree-POMM and merging the states, the repeat numbers were kept

track of, so that the repeat number distribution for each state could

be constructed. After following the POMM derivation procedure,

there were 18 states in the model. The resulting model was

evaluated by generating 10000 sequences following the state

transitions from the start state. If a state with no repeat syllable was

reached, the syllable associated with the state was generated. If a

state with repeat syllables was reached, a repeated sequence of the

syllable was generated with the repeat number sampled from the

repeat number distribution associated with the state. The sequence

stopped if the end state was reached. The generated sequences

were compared with the observed sequences for the repeat

number distributions of each syllable, the N-gram distributions,

and the step probabilities of each syllable and the end symbol. We

further tested deletion of each state and mergers of all pairs of

states with the same syllables, while monitoring the d-values of the

three statistical properties. The deletions and mergers were

accepted if the d-values fell below the benchmarks or they were

less than the corresponding d-values of the model with the 18

states. The resulting POMM, shown in Figure 7a, has 11 states.

Syllables B, C, D, G are associated with two states each, and

syllables A, E, F have one associated state each.

We next modeled the repeat number distributions in each state

with the adaptation model described previously. For some states,

the adaptation model was not adequate to fit well the repeat

number distributions (cosine-similarity of the distributions v0:95
with best fitting parameters; Eq.(1) in Materials and Methods). In

such a case, the state S was split into two serially connected states

S1?S2. The transitions and associated probabilities to S were set

to S1, and S1 and S2 emitted to the same states and probabilities

as S. S2 has a self-transition with probability p and adaptation

parameter a, while S1 has no self-transition but has a transition

probability p1 to S2. The repeat number distribution with these

parameters is given by Pn~p1a(n{3)(n{2)=2pn{2(1{an{2p) (Ma-

terials and Methods). The parameters were fit with the nonlinear

least square fitting procedure. Each state-splitting thus introduced

one more state and one more parameter to the model, and was

adequate to fit well the observed repeat number distributions when

necessary. The resulting POMMA is shown in Figure 7b. Three

states associated with syllables A, C, D were split. Altogether, there

are 14 states, and the number of states for syllables A to G are 2, 2,

3, 3, 1, 1, 2, respectively.

We generated 10000 syllable sequences from the POMMA

(examples shown in Figure 7c), and compared with the observed

song sequences the repeat number distributions (Figure 3c), the N-

gram distributions (Figure 4c), and the step probabilities

(Figure 5c). The comparisons are excellent. All d-values fall below

or close to the benchmarks, as shown with the red curves in

Figure 6. In contrast, the d-values for the Markov model are mostly

far beyond the benchmarks, as shown with the cyan curves in

Song Syntax of Bengalese Finch
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Figure 6. The d-values for the Markov model with adaptation are

also larger than those for the POMMA, as shown with the green

curves in Figure 6. In particular, the d-values for the N-gram

distributions are far beyond the benchmarks and the d-values of

the POMMA. Thus, the POMMA is a much better model than

the Markov model or the Markov model with adaptation.

The songs of Bird 2
We repeated the analysis for songs of Bird 2. The vocal elements

were clustered into 7 types, with 6 types identified as song syllables

(Figure 8a, n~7476,2388,1999,751,571,77 for syllables A to F,

respectively) and one type identified as the introductory note

(Figure 8a, C1, n~1387). The song sequences occurred in long

sequences (mean length 15:6+4:9 s.d.), with the gaps between

consecutive syllables smaller than 200ms. The introductory note

appeared with repeats preceding the song sequences, and had

much smaller volume compared to the song syllables. Less call

notes were recorded for Bird 2 than for Bird 1 since the song

sequences could be distinguished from the calls based on the

lengths of the consecutive sequences of vocal elements with the

gaps v200ms. A total of 845 song sequences were used for

deriving the models.

Comparisons of the three models
We derived the POMMA for Bird 2 using the same procedure

as for Bird 1. The POMM derived with the non-repeat versions of

the song sequences has 10 states (Figure 9a). There are two states

associated with syllable A, three states with syllable C, and one

state with all other syllables. The states in the POMM with syllable

repeats were replaced with states with adaptive self-transition

probabilities and additional states when necessary to derive the

POMMA (Figure 9b). Syllable A is associated with state 12 and

state 10 of the POMM. In state 12, the number of repetitions of

syllable A ranges from 2 to 16 and the repetition distribution peaks

at 6. We modeled this distribution by replacing state 12 with two

serially connected states S1?S2, each with adaptive self-

transitions (Materials and Methods). The self-transition probabil-

ities and the adaptation parameters are p1,a1 for S1, and p2,a2 for

S2. The transition probability from S1 to S2 is p0. The inward

transitions to state 12 of the POMM were set to S1 with the

probabilities intact. The outward transitions from state 12 were

transferred to S1 and S2, with the transition probabilities scaled to

make sure that total transition probabilities out from S1 and S2

were normalized including the self-transitions and the transitions

from S1 to S2. The resulting repeat number distribution with these

parameters was fitted with the observed distribution using the

nonlinear least square procedure (Materials and Methods), and the

cosine-similarity of the fitted and the observed distributions

reached 0.98. We tested simpler models of the repeat number

distribution for state 12, including one state with adaptive self-

transition probability and two serial states with only one state with

adaptive self-transition probability, but they did not work as well.

In state 10 of the POMM, syllable A repeats twice more than

99.7% of the time, with the rest being single repeats. We modeled

this by replacing state 10 with two serial states S1?S2 with no self-

transitions, and with a small probability of not transitioning from

S1 to S2 to account for the rare case of single syllable A. The

inward transitions to state 10 were transferred to S1, and the

outward transitions from state 10 were transferred to S1 and S2,

similarly as for the case of state 12. The situation is similar for

syllable B in state 11, which predominantly has two repeats (90%).

State 11 was replaced with two serial states with no self-transitions.

The number of repetitions for syllable C in state 6 ranged from 1

to 6 and peaked at 3. This repetition number distribution was

model with one state with adaptive self-transition probability. All

other states with more than one repeat were accurately modeled

by adding self-transitions as in the Markov model. The cosine-

similarities of the fitted and the actual repeat number distributions

Figure 8. The syllables and song sequences (Bird 2). The convention is the same as in Figure 1.
doi:10.1371/journal.pcbi.1001108.g008

Figure 7. The POMMA (Bird 1). a. The POMM derived from the observed syllable sequences with syllable repetitions taken out. The numbers in
the ovals are the state labels. b. The POMMA derived from the model shown in a with the repetitions fitted with adaptation models. c. Examples of
syllable sequences generated from the POMMA shown in b. The conventions are the same as in Figure 2.
doi:10.1371/journal.pcbi.1001108.g007
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were all greater than 0.95. The resulting POMMA, shown in

Figure 9b, has 13 states (n~4,3,3,1,1,1 for syllables A to F,

respectively).

The POMMA accurately describes the statistical properties of

the syllable sequences of Bird 2. We generated 10000 song

sequences using the POMMA, and compared to the observed

sequences the repeat number distributions, the N-gram distribu-

tions, and the step probability distributions. The comparisons are

excellent (Figure 10a–c). The d-values between the model and the

observed distributions are below or very close to the benchmarks

obtained from the observed sequences as in the case of Bird 1

(Figure 10d–f, red curves). In contrast, the Markov model and the

Markov model with adaptation, derived and evaluated following

the same procedure as for Bird 1, fail to describe the statistical

properties of the observed sequences (Figure 10d–f, cyan and

green curves). The Markov model with adaptation cannot

accurately model the repeat number distribution of syllable A,

which has double peaks as shown in the first graph in Figure 10a,

even though the model can accurately describe the repeat number

distributions of other syllables. This contributed significantly to the

inaccuracy of the Markov model with adaptation in the N-gram

distributions and the step probability distributions.

Figure 9. The POMMA (Bird 2). a. The POMM derived from the observed syllable sequences with syllable repetitions taken out. The numbers in
the ovals are the state labels. b. The POMMA derived from the model shown in a with the repetitions fitted with adaptation models. The convention
is the same as in Figure 2.
doi:10.1371/journal.pcbi.1001108.g009
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Evidence of many-to-one mapping
In the POMM, different states can be associated with the

same syllable type. One possible piece of evidence of such many-

to-one mapping from states to syllables can be the subtle

differences that might exist in the instances of the same syllable

associated with different states. For Bird 1, there are two states

for syllables B,C,D,G in the POMM shown in Figure 7a. We

compared the duration distributions of the same syllable types

associated with different states, as shown in Figure 11a. The

distributions are clearly distinctive for syllables B, C, G (p~0,

shuffle test of the significance that the difference of the means of

the two distributions is none-zero; the null-distribution of the

difference of the means was generated using 500 pairs of

randomly shuffled distributions, and the p-value is the two-tailed

probability of the difference of the means greater than the

observed value given the null-distribution). There is no clear

evidence of distinctions for syllable D (p~0:21). Despite the

significant differences in the durations for syllables B in the two

states, the spectrograms of the syllables in the two states are very

similar, as shown in Figure 11b. The same is true for other

syllables.

For Bird 2, the duration distributions of the same syllable

types associated with different states are mostly distinctive (p~0
in three cases and p~0:074 in one case), as shown in Figure 11c,

while spectrally the syllables are very similar (examples shown

in Figure 11d). Most interestingly, durations of the syllables

associated with the same state in the POMM can also be

distinctive depending on the positions of the syllables in the

repetition. In Figure 12a we show three cases. The first is

syllable B associated with state 11 in the POMM. The durations

of syllable B in the first position of repetition is significantly

longer than in the second position of the repetition (p~0). The

second is syllable A associated with state 10. The durations of

syllable B in the first position of repetition is clearly shorter

than those in the second position (p~0). Spectrally, these sets of

syllables are indistinguishable (Figure 12b for syllable B and 12c

for syllable A). Both states were replaced with two serial states

in the POMMA. Weaker evidence (p~0:07) also exists for

Figure 10. Comparisons of the models and data (Bird 2). The repeat (a), the N-gram (b) and the step probability (c) distributions are compared
for the observed (black curves) and the POMMA-generated (red curves) sequences. d, e, f. Summary of the differences between the model-generated
and observed distributions for the Markov model (cyan curves), the Markov model with adaptation (green curves), and the POMMA (red curves). The
gray bars are the benchmarks obtained from the observed syllable sequences.
doi:10.1371/journal.pcbi.1001108.g010
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syllable A associated with state 12 in the POMM (Figure 12a),

which is replaced with two serial states both with adaptive self-

transition probabilities in the POMMA. The systematic

variations of syllable durations on the positions in repetition

supports the idea of using multiple states to model repeat

number distributions associated with single states in the

POMM.

Taken together, the results on syllable durations provide some

evidence for the validity of the many-to-one mapping from the

states to the syllables.

Figure 11. Evidence of many-to-one mapping from the states to the syllables. Panels a and b are for Bird 1, and c and d for Bird 2. a and c.
Syllable durations of the same syllable types associated with different states in the POMM shown in Figure 7a and in Figure 9a, respectively. In each
graph, red and blue curves are from different states. The state labels are shown with corresponding colors. The p-values on top test the significance
that the differences of the means of the two distributions are non-zero. The syllable types are shown on top. b and d. Spectrograms of randomly
selected examples of syllables of the same type associated with different states in the POMM. Durations of the syllables are shown on top. Frequency
range of the spectrograms is from 1–10kHz.
doi:10.1371/journal.pcbi.1001108.g011
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Discussion

Bengalese finch songs consist of variable sequences of a finite

number of syllables. We have shown that the statistical properties

of the sequences are well captured by a state transition model, the

POMMA, in which the repeat probabilities of the syllables adapt

and many-to-one mappings from the states to the syllables are

allowed. The Markov model, which has been commonly used in

studies of characterizing variable birdsong sequences, is clearly

inadequate for the Bengalese finch songs. The POMMA is an

extension of the Markov model. As in the Markov model, each

state is associated with a single syllable, and the state transitions

are characterized by the transition probabilities. However, unlike

the Markov model, many states are allowed to be associated with

the same syllable, and the state transition probabilities can vary

depending on the history of the state transitions dynamics. These

extensions are motivated by considerations of the neural

mechanisms of birdsong generation.

The premotor nucleus HVC (used as a proper name) is a critical

area in songbird brain for song production [20]. Firing of HVC

neurons that project to RA (the robust nucleus of the arcopallium)

drives singing [21,22]. Experimental evidence suggests that a

syllable is produced by the bursts of spikes propagating in a chain

network of HVC projection neurons [22–25]. A set of HVC

Figure 12. Evidence of different states representing the repeating syllables. a. The duration distributions of the syllables occurring the first
(red curves) and the second (blue curves) in the repetitions are compared for syllable B associated with state 11 (left), syllable A associated with state
10 (middle), and syllable A associated with state 12 (right) in the POMM of Bird 2 shown in in Figure 9a. The p-values on top test the significance that
the differences of the means of the two distributions are non-zero. b. Spectrograms of randomly selected examples of syllables B occurring the first
(top) and the second (bottom) in the repetition in state 11. c. Same as in b but for syllable A in state 10. Durations of the syllables are shown on top.
Frequency range of the spectrograms is from 1–10kHz.
doi:10.1371/journal.pcbi.1001108.g012
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projection neurons reliably drive the RA neurons [22], which in

turn drive downstream motor neurons to produce sound. Such a

chain network in HVC could be a neural representation of a single

state in POMMA. Thus, the association of a state to a single

syllable is a reflection of the reliability of a chain network driving

the production of a syllable.

The connections from HVC to RA are learned [26–29]. This

makes it possible that different sets of HVC projection neurons are

set up during learning to drive acoustically similar syllables. In

zebra finch, different neural activity in HVC has been observed

during vocalizations of acoustically similar syllables [21,30],

supporting the possibility of multiple sets of HVC neurons driving

the same syllable. Such a possibility of many-to-one associations

from the neural sets in HVC to syllables motivates introduction of

many states corresponding to one syllable in the POMMA. It is

conceivable that the same syllable driven by different sets of HVC

neurons have subtle differences in the acoustic features due to

imperfections of learning. Indeed, we found that instances of the

same syllable associated with different states in the POMMA can

have significantly different duration distributions (Figure 11 and

Figure 12). A recent study has shown that the acoustic features of

Bengalese finch syllables can shift systematically depending on the

sequences around the syllables [31], which is in agreement with

our observation. There can be alternative explanations to our

observations that do not require separate sets of HVC neurons to

encode the same syllable. One possibility is that the sequence-

dependent differences in the acoustic features are due to the

history dependence of the activations of the unique set of HVC

neurons driving the syllable. Another possibility is that the

differences are due to the inertia of the motor periphery rather

than the variations in neural activity [31]. Finally, the differences

can be due to sequence dependent activations of neurons in other

areas in the song system, such as RA [31]. More direct

experiments, such as single unit recordings in HVC of singing

Bengalese finch, are required to test unambiguously whether the

many-to-one mapping from HVC to RA exits.

The POMMA can be directly mapped onto the branched chain

network model of the Bengalese finch song syntax [10]. Each state

of the POMMA corresponds to a syllable-encoding chain network

of HVC projection neurons, and each transition S1?S2 in the

POMMA corresponds to the connection from the end of the

synaptic chain corresponding to S1 to the start of the synaptic

chain corresponding to S2. The POMMA and the network model

thus have identical branching connection patterns. In the network

model, spike propagation along a chain drives the production of a

syllable. At a branching point, spike propagation continues along

one of the connected chain networks with a probability that

depends on a winner-take-all competition and noise [10,15]. The

success of the POMMA in capturing the statistical properties of

the Bengalese song sequences supports the branched chain

network model of Bengalese finch song syntax. A critical

prediction for the network model is that, for some syllables,

HVC projection neurons should burst intermittently, bursting

during some instances of the syllables but not in others. This is

markedly different from the case of zebra finch, in which HVC

projection neurons burst reliably for each production of the song

sequence [22,25]. The prediction can be tested with electrophys-

iological experiments.

Adaptations are widely observed in neural systems. Continuous

firing can reduce neuron excitability [18], and excitatory synapses

can be less effective when activated repeatedly [16,17]. In zebra

finch, consecutive singing increases the durations of the song

syllables [32]. It is possible that the slow-down of the song tempo is

due to some adaptive processes in HVC. In the branched chain

network model of the Bengalese song syntax, weakening

connection strength from one chain network to another at a

branching point reduces the transition probabilities between them

[10]. These observations suggest that the transition probabilities

might not be fixed. Introducing adaptive processes in the neural

excitability and synaptic efficacy should lead to adaptive transition

probabilities in the branched chain network model, especially for

the repeated activations of a chain network, which correspond to

the reduction of the self-transition probability. It remains to be

seen experimentally whether HVC projection neurons or the

excitatory synapses between them have the adaptive properties. It

might be also possible to see the signatures of adaptation by

analyzing the burst intervals of HVC projection neurons during

syllable repetitions, or the burst intervals of RA neurons. The

observation that burst intervals in RA neurons steadily increase

with song sequence repetition in zebra finch [32] suggests that

similar effect could be observed in Bengalese finch.

We emphasize that adaptation is important for reducing the

complexity of the state transition model. It is possible to include

syllable repetitions in the POMM, with no adaptations of the

transition probabilities, and accurately describe the statistical

properties of the Bengalese finch songs (Materials and Methods;

supplementary Figures S2–S4). However, compared to the

POMMA with adaptation, the number of states is larger. While

the POMMA has 14 and 13 states for Bird 1 and Bird 2 (Figures 7b

and 9b), respectively, the POMM has 20 and 18 states (Figures S2

and S3). In the POMM, many states are needed to produce the

peaked repeat number distributions such as that of syllable A in

Bird 2 (Figure 10a). The difference of the number of states in the

POMM and the POMMA should increase with the number of

syllables with peaked repeat number distributions. It is the

significant reduction of the model complexity that motivates our

choice of the model with adaptation (the POMMA) rather than

the non-adapting model (the POMM).

We have used multiplicative reduction of the repeat probabil-

ities. It remains to be investigated whether other formulations of

the adaptation can be similarly or even more effective. In our

approach, only the repeat probabilities are adapted. A more

consistent model should allow adaptation and recovery in all

transition probabilities, such that the state transition dynamics

depends on the history of the entire syllable sequence, not just the

syllable repetitions. This approach might be important if there are

repeats of short sequences such as ABABABAB, in which the

transition probabilities from A to B and B to A might need to be

adapted. But such a model is difficult to derive from the observed

sequences. In our data, repetitions of short sequences were rarely

seen, hence adapting only the repeat probabilities of single

syllables was adequate. We have shown that adaptation alone is

not sufficient to augment the ability of the Markov model to

describe the Bengalese finch songs, and the many-to-one mapping

from the states to the syllables is necessary. However, we cannot

rule out the possibility that the more consistent model with all

transition probabilities adaptive, and perhaps with more complex

forms of adaptation, can eliminate the requirement for the many-

to-one mapping.

The POMMA is closely related the hidden Markov model

(HMM) [33], which is widely used to model sequential structures

in human languages [14,33,34] and genomes [35,36]. In the

HMM, the transitions between the states are as in the Markov

model, but each state is allowed to emit all symbols (or syllables in

birdsong case) with some probability dependent on the state. The

flexibility of the state and the symbol associations makes the HMM

much more capable of capturing statistical properties of sequences

than the Markov model. To apply the HMM to birdsong,
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however, it makes more sense to require that a state can be

associated with a single syllable only, if the correspondence

between the model and the neural dynamics of birdsong

generation is considered [10]. HVC neurons reliably activate

RA neurons [22], and there is no evidence that activation of the

same sets of HVC or RA neurons can probabilistically produce

multiple syllables. The HMM with the restriction that one state

emits one symbol is the POMM [10,19]. The POMM is

distinguished from the Markov model in that a syllable can be

associated with multiple states (many-to-one mapping from the

states to the syllables). Even though the transitions between the

states are Markovian, the syllable statistics can be non-Markovian

due to the multiple representations of the same syllables [10]. The

HMM with no one-to-one restriction does not lead to a more

compact model than the POMMA for the Bengalese finch songs

(Materials and Methods). To achieve the level of the accuracy of

the POMMA, the HMM needs close to 18 states for both Bird 1

and Bird 2 (Figures S7), which is similar to the POMM. Indeed,

most states in the HMMs predominantly emit one syllable (Figures

S5 and S6), and the structures of the HMMs and the POMMs are

similar for both birds.

There are previous efforts of describing Bengalese finch song

sequences with state transition models [12,13]. Chunks of syllable

sequences, which are fixed sequences of syllables, were extracted

from the observed sequences and used as the basic units of the

state transition models [12,13]. A syllable can appear in many

chunks, hence these models implicitly contain the many-to-one

mapping from the states to the syllables. But the chunk extractions

and the state models were not derived from the statistics of the

observed sequences. Furthermore, the models were not tested

against the observed song sequences for statistical properties. In

contrast, the POMMAs were derived from and tested with the

observed song sequences.

Although there is a close connection between the POMMA and

the branched chain network model of how HVC generates

variable syllable sequences in Bengalese finch [10,15], the

POMMA or the POMM can be compatible with alternative

neural mechanisms, including feedback control of sequences

through RA to HVC projections [31], syntax generation in other

nuclei upstream to HVC or RA in the song system [12,37,38],

noisy recurrent networks in HVC [39], and branched chain

networks of inhibitory HVC interneurons [40]. It is also possible

that different statistical models can be derived from these

mechanisms. More detailed analyses of the alternative mechanisms

are needed to see whether they can produce syllable sequences

with statistics compatible to the observed Bengalese finch songs.

There should be a family of equivalent POMMAs for the songs

of a Bengalese finch. For example, the same repeat distributions

can always be modeled with more states. The POMMA that we

have derived is the simplest model that is consistent with the data.

Given this insight, we expect that the neural representation of the

syntax should be similar to the derived POMMA but most likely

not identical. We have developed a state merging method for

deriving the POMM from the observed syllable sequences. It is

possible to use the well-established methods of training the HMM

[33] to derive the POMM. We observe that our method is faster

than the training methods of the HMM. A more detailed analysis

of the state merging method is needed to quantify its speed and

convergence properties.

In conclusion, we have derived a compact POMMA that

successfully describes the statistical properties of Bengalese finch

songs. Our approach can be useful for modeling other sequential

behaviors in animals and statistical properties of sequences in

general.

Materials and Methods

Vocalization recording
Acoustic recordings were performed with a boundary micro-

phone (Audio-Technica PRO44). Microphone signals were

amplified and filtered (8th-order Bessel high-pass filter with

fc~300Hz and 8th-order Bessel low-pass filter with fc~10kHz,

Frequency Devices). The filtered signals were digitized with a 16-

bit A/D converter (PCI-6251, National Instruments) with a

sampling rate of 40kHz.

Vocal elements and spectrograms
Vocal elements were defined as continuous sounds bounded by

silent periods. Thresholding the amplitudes of the pressure waves

is a common approach of isolating vocal elements in birdsongs

[31,41,42]. We developed a similar method. From the pressure

wave w(t) of a vocalization, the oscillation amplitude A(t) at time t
was obtained by finding the maximum of jw(t)j in the interval of

one oscillation cycle that contains t. The amplitude was further

transformed to As(t)~S(A(t)1=5), where S(:) is a smoothing

function that uses the second order Savitzky-Golay filter with

20ms window (801 data points). Vocal elements were isolated by

detecting continuous regions in As(t) that were above a threshold

function h(t). The threshold function was obtained in 100ms
moving windows (step size 5ms); in each window, the threshold

was set at the 0.3 point from the floor As,min of As(t) to the local

maximum of As(t) in the window. The floor As,min is the

characteristic value of As(t) in the regimes with no sound, and was

identified as the position of the lowest peak in the histogram of the

values of As(t) for all t. A detected region was excluded if the total

area above As,min was smaller than 1ms multiplied by the

difference between the maximum value As,max~ maxt A(t) and

As,min; or if the maximum value of As(t) in the region minus As,min

was smaller than 0:2(As,max{As,min); or if the width of the region

was less than 10ms. These exclusions ensured that most noisy

fluctuations were not counted as vocal elements. The results of the

vocal element isolations were manually checked and adjusted by

plotting out the waveforms in conjunction with the boundaries of

the vocal elements to ensure that no obvious mistakes were made.

The parameters used in the above procedure were empirically

determined to yield the best results in our dataset. They should be

adjusted if the procedure is used for other recordings of birdsong.

The waveform of an isolated vocal element was transformed

into a spectrogram s(f ,t), which is the energy density at frequency

f and time t. The frequency was restricted to 1kHz to 12kHz. The

spectrogram was computed with the multi-taper method [43]

(time-bandwidth product, 1.5; number of tapers, 2) with 5ms
window size and 1ms step size (software from http://chronux.org).

The frequency was discretized into grids with 156:25Hz between

adjacent points. To exclude silent periods at the beginning and the

end of the vocal element, the time span of the spectrogram was

redefined to the region in which the total power in the spectrum at

each time point exceeded 5% of the maximum of the total powers.

Types of vocal elements
We used a semi-automated procedure to cluster the vocal

elements into separate categories. Similarities between the vocal

elements were defined and used in a clustering algorithm. The

final results were visually inspected and adjusted by plotting the

spectrograms of all vocal elements in the clusters.

The similarity between the vocal elements was defined as

follows. The spectrogram s(f ,t) was considered as a sequence of

spectra at the discrete time points. The spectrum at each time

point was smoothed over the frequency domain using the second
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order Savitzky-Golay filter with window size of 5 frequency points.

The smoothed spectrum was further decomposed into a slowly

varying background sb(f ,t) by smoothing with the second order

Savitzky-Golay filter with window size of 20 frequency points; and

peaks sp(f ,t) by subtracting out sb(f ,t). The relative importance of

the peaks compared to the background was characterized by the

weight as~s:d:(sp(f ,t))=(s:d:(sp(f ,t))zs:d:(sb(f ,t))), where s:d: is

the standard deviation of the distribution over the frequency

domain.

The spectrum at t1 of s1(f ,t1) was compared to the spectrum at

t2 of s2(f ,t2) by computing

m12~aC(sp,1(f ,t1),sp,2(f ,t2))z(1{a)C(sb,1(f ,t1),sb,2(f ,t2)),

which is the weighted sum of the cosine-similarities between the

peaks and between the backgrounds. Here sp,1(f ,t1) and sp,2(f ,t2)

are the peaks and sb,1(f ,t1) and sb,2(f ,t2) are the backgrounds of

s1(f ,t1) and s2(f ,t2), respectively. The cosine-similarity C(v1,v2) of

two vectors (or distributions) v1,v2 was defined as

C(v1,v2)~
(v1{�vv1):(v2{�vv2)

jv1{�vv1jjv2{�vv2j
ð1Þ

where �vv1 and �vv2 are the means and j:j is the norm. a is the

maximum of the weights across all time points of the two syllables.

If m12w0:75, the two spectra s1(f ,t1) and s2(f ,t2) were considered

the same (denoted s1(f ,t1)*s2(f ,t2)). Otherwise the two spectra

were defined as distinctive.

The similarity between two syllables was characterized by the

longest common subsequence (LCS) between them. A common

subsequence was defined by a set of time points t11vt21v:::vtk1

in syllable s1(f ,t) and a set t12vt22v:::vtk2 in syllable s2(f ,t),
such that the spectra at corresponding time points are the same,

i.e. s1(f ,t11)*s1(f ,t12), s1(f ,t21)*s1(f ,t22), ..., s1(f ,tk1)*
s1(f ,tk2). There was an additional restriction that corresponding

time points did not differ by more than 50ms, i.e. jt1j{t2j jv50ms
for all 1ƒjƒk. The length of the common subsequence is k. LCS

is the common subsequence with the maximum length. A long

LCS indicates that the two syllables are similar, while a short LCS

indicates they are dissimilar. We defined the similarity score of two

syllables as the length of LCS divided by the mean of the lengths of

the two syllables.

Types of vocal elements were identified by clustering 4000 vocal

elements using a core-clustering algorithm, modified from the

algorithm described in Jin et al [44]. The algorithm is based on the

distance between vocal elements, defined as one minus the

similarity score, and consists of the following steps. (1) For each

vocal element, find the list of nearby vocal elements with distances

less than 0.1. (2) Among the vocal elements that are not yet part of

a cluster, select the one with at least 5 nearby vocal elements and

the smallest mean distances to its nearby vocal elements as the core

point of a new cluster. (3) Assign all unclustered vocal elements

that are in the nearby-list of the core point to the new cluster. All

vocal elements that are in the nearby-list but already clustered are

reassigned to the new cluster if their distances to the core points of

their respective clusters are larger than their distances to the new

core point. (4) Repeat steps (2–3) until no new cluster could be

created. (5) Merge clusters. Two clusters are merged if at least 5%

of the vocal elements in each cluster had small distances (v0:1) to

the vocal elements in the other cluster. (6) Assign vocal elements

that are not yet clustered. A vocal element is assigned to the cluster

that had the maximum number of members whose distances to the

vocal element are less than 0.15. In some cases, individual clusters

contained separate vocal element types that had subtle differences

but distinguishable. Such clusters are split into new clusters.

Once the types of vocal elements were identified with the

clustering algorithm, we used the following procedure to classify all

vocal elements that were not already clustered. (1) Identify the

center of each cluster as the vocal element that has the minimum

mean distances to all other vocal elements in the cluster. (2)

Compute the distances from the vocal element to be assigned to

the cluster centers. The three clusters with the lowest distances are

selected. (3) Compare the durations of the vocal elements in the

selected clusters to the duration of the candidate vocal element,

and select 20 (or less if the cluster size is smaller than 20) from each

selected cluster that are closest. (4) Compute the distances from the

candidate vocal element to the selected vocal elements. (5) Assign

the vocal element to the cluster to which the most of the selected

vocal elements with the distances smaller than 0.2 belong. (6) If

none of the selected vocal elements have distances less than 0.2, do

not assign the candidate vocal element. The unclustered vocal

elements were grouped into 2000 blocks, and their mutual

distances were computed. The clustering and identifying proce-

dures were repeated until no more clusters emerge. During this

process, clusters were merged if they were subjectively judged as

similar by inspecting the spectrograms and the mutual distances

between the members of the clusters. Individual vocal elements

were reassigned to different clusters if necessary.

The final results of the clustering of the vocal elements were

validated and adjusted by visual inspections of the spectrograms.

Repeats number distributions with adaptation
In the case of a state with self-transition, the transition

probability is p initially but is reduced to anp after n repetitions

of the state, where 0vav1 is the adaptation parameter. The

probability of having n repeats is then

Pn~p:(ap):(a2p)::::(an{2p)(1{an{1p)

~a(n{2)(n{1)=2pn{1(1{an{1p):

More complex repeat distributions can be modeled with more

states. One model has two serial states S1?S2. Both are associated

with the same syllable, and only S2 has self-transition. The

transition probability from S1 to S2 is p0, and the self-transition

probability of S2 is p initially but undergoes adaptation with the

adaptation parameter a. The probability of observing one repeat is

given by

P1~1{p0:

The probability of observing nw1 repeats is given by

Pn~p0a(n{3)(n{2)=2pn{2(1{an{2p):

Another model with two serial states allows both S1 and S2 to have

self-transitions with parameters p1,a1 for S1 and p2,a2 for S2. The

probability of transitioning to S2 after leaving S1 is p0. The

probability of observing one repeat is

P1~(1{p1)(1{p0):
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The probability of observing two repeats is

P2~p1(1{a1p1)(1{p0)z(1{p1)p0(1{p2),

in which the first and the second terms are the probabilities of the

state sequences S1S1 and S1S2, respectively. Similarly, for nw2,

the probability of observing n repeats is given by

Pn~Pn,1(1{p0)z
Xn{1

m~1

Pm,1p0Pn{m,2,

where

Pk,1~a
(k{2)(k{1)=2
1 pk{1

1 (1{ak{1p1),

and

Pk,2~a
(k{2)(k{1)=2
2 pk{1

2 (1{ak{1p2):

Here Pk,1 and Pk,2 are the probabilities of repeating S1 and S2 k
times, respectively.

The cases above were all we needed to model the Bengalese

finch songs in this study. More complex models with more states

can be necessary for other Bengalese finch songs, and the repeat

number distributions can be similarly derived.

Derivation of the POMM
We used a state-merging method to derive the POMM from the

observed syllable sequences. The process is illustrated with an

example in Figure S1 with a simple case of two syllables 1 and 2.

From 5000 observed sequences (Figure S1a), a tree Markov model

is constructed (Figure S1b). For each sequence, the tree model

contains a unique path of state transitions from the start state. This

is achieved by starting with the start state Ss and the end state Se

only, and adding new states as needed by finding the paths for the

sequences. For example, consider the first sequence 12. At this

point no states are emitted from the start state. A new state S1 with

syllable 1 is added and connected from the start state; a new state

S2 with syllable 2 is added and connected from S1; finally, S2

connects to the end state. With the additions of the two states, the

sequence is mapped to a state transition path Ss?S1?S2?Se.

Now consider the second sequence 121. State transitions

Ss?S1?S2 generate the first two syllables in the sequence. To

generate the last 1, a new state S3 with syllable 1 is added, and is

connected from S2 and also to the end state. Now S2 branches into

S3 and Se. This process continues, until all observed sequences are

uniqued mapped into the paths in the tree model. The transition

probabilities from a state to all connected states are computed

from the frequencies of the transitions observed in the sequences.

The tree model is a simple POMM that is a direct translation of

the observed sequences; it contains all observed sequences.

However, the tree model is incapable of generating novel

sequences that are statistically consistent with the observed

sequences. Moreover, since each transition probability can be

considered as a parameter, the number of parameters in the tree

model is enormous, severely restricting its predictive power. To

reduce the number of parameters, a more concise POMM is

derived by merging the equivalent states in the tree model. If two

states are associated with the same syllable, and the probability

distributions of subsequent sequences of length 15 or smaller are

similar (cosine-similarity w0:9), the two states are merged. This is

done until no further mergers are possible. Finally, state transitions

with probabilities smaller than 0.01 are eliminated, and all states

that are reached less than 0.005 times in all observed sequences

are also eliminated. These merging and pruning procedures lead

to a concise POMM with five states for the simple example, as

shown in Figure S1c. There are two states for syllable 1, which is

an example of the many-to-one mapping. Indeed, the observed

sequences in Figure S1c was generated with a POMM with

structure identical to the one in Figure S1c and with equal

transition probabilities to all connected states from a given state.

The example demonstrates that the state merging method can lead

to a concise POMM from observed sequences. The procedure was

used to derive the POMMs for Bird 1 and Bird 2 using the non-

repeat versions of the syllable sequences and keeping track of the

number of syllable repetitions in each state, as described in the

main text. The accuracy of the POMM from the state merging

procedure was tested by generating 10000 sequences (see the main

text for the generation procedure) and comparing with the

observed sequences the repeat number distributions, the N-gram

distributions, and the step probability distributions. The d-values

were computed and compared with the benchmarks derived from

the observed syllable sequences as discussed in the main text. The

number of states in the POMM was further reduced by testing

mergers of all states associated with the same syllables and testing

deletions of all states. The mergers and deletions were accepted if

the d-values of the resulting POMM fell below the benchmarks or

they were smaller than the d-values of the original POMM. The

state merging and subsequent reduction of the number of states

was fully automated. The POMM derived from the above

procedure were morphed into the POMMA by replacing each

state associated to repeating syllables with one or more states with

adaptive self-transition probabilities. Various adaptive models for

the repeat number distributions were tested as described in the

main text. The process of morphing the POMM to the POMMA

was not automated.

To derive the POMM from the syllable sequences but include

the syllable repetitions without introducing adaptation, each state

associated with repeating syllables in the POMM derived with the

non-repeat versions was replaced by its own POMM. The

replacing POMM was derived from the repeat sequences of the

syllable using the HMM training method described below. In this

case, since there is only single syllable in the repeat sequences, the

HMM is equivalent to the POMM. We increased the number of

states in the replacing POMM until the repeat number distribution

of the syllable could be reproduced with the cosine-similarity

w0:95. The in and out transitions in the POMM from the non-

repeat versions were retained in the replacements. The resulting

POMMs for Bird 1 and Bird 2 are shown in Figures S2 and S3.

Direct applications of the state merging procedure did not lead to

concise POMMs using the syllables sequences with repetitions.

The main reason was that the syllable repetitions, especially when

the mean repetition number was larger, required more sequences

than available to accurately judge the statistical equivalence of the

states for merging in the tree POMM.

Derivation of the HMM
We used the Baum-Welch algorithm for training the HMM

from the observed sequences [33]. A number of states is chosen for

the HMM. There is a start state and an end state, which only emit

the start and the end symbols, respectively. All other states can be

associated with any of the syllables with the emission probabilities.

The transitions from the start state to the end state and from all

states to the start state were excluded. All transition and emission

probabilities were set randomly initially, and adjusted with the
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observed sequences using the Baum-Welch algorithm until they

converged (errors of the probabilities below 0.001). To avoid local

minima in deriving the HMM, we repeated the training process 20

times, and selected the HMM with the maximum log-likelihood

for the observed sequences. The derived HMM was evaluated by

generating 10000 sequences and comparing the statistics with the

observed sequences. The generation method is the same as in the

Markov model, except that at each state, the syllable generated is

determined from the emission probabilities at that state. The

number of states in the HMM was systematically varied. The

results for Bird 1 and Bird 2 are shown in Figures S5–S7.

Supporting Information

Figure S1 An example of deriving the POMM from observed

sequences. a. The observed sequences generated by a POMM with

three states, two states with symbol 1 and one state with symbol 2.

b. The tree-POMM derived from 5000 observed sequences. c.

The derived POMM after merging equivalent states in the tree-

POMM. The original model used to generate the sequences

shown in a are recovered. The diagram conventions are the same

as in Fig. 2.

Found at: doi:10.1371/journal.pcbi.1001108.s001 (0.29 MB EPS)

Figure S2 The POMM for Bird 1. The POMM is derived with

the syllable repetitions included. The conventions are the same as

in Fig. 2.

Found at: doi:10.1371/journal.pcbi.1001108.s002 (0.29 MB EPS)

Figure S3 The POMM for Bird 2. The POMM is derived with

the syllable repetitions included. The conventions are the same as

in Fig. 2.

Found at: doi:10.1371/journal.pcbi.1001108.s003 (0.30 MB EPS)

Figure S4 Summary of the differences between sequences

generated with the POMM and the observed sequences for the

repeat (left), the N-gram (middle) and the step probability (right)

distributions. a. Bird 1. b. Bird 2. The POMM’s are shown in Fig.

S2 and S3. The gray bars are the bench marks.

Found at: doi:10.1371/journal.pcbi.1001108.s004 (0.33 MB EPS)

Figure S5 The hidden Markov model (Bird 1). The HMM with

18 states are shown. In each state, the syllable with the maximum

emission probability is shown, along with the maximum emission

probability. Other conventions are the same as in Fig. 2.

Found at: doi:10.1371/journal.pcbi.1001108.s005 (0.30 MB EPS)

Figure S6 The hidden Markov model (Bird 2). The HMM with

18 states are shown. In each state, the syllable with the maximum

emission probability is shown, along with the maximum

probability. Other conventions are the same as in Fig. 2.

Found at: doi:10.1371/journal.pcbi.1001108.s006 (0.27 MB EPS)

Figure S7 Summary of the differences between sequences

generated with the hidden Markov models and the observed

sequences for the repeat (left), the N-gram (middle) and the step

probability (right) distributions. Number of states in the models are

indicated with the colors: cyan, 8; green 13; red, 18; and black, 23.

a. Bird 1. b. Bird 2.

Found at: doi:10.1371/journal.pcbi.1001108.s007 (0.38 MB EPS)
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