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Many animals produce vocal sequences that appear complex. Most researchers

assume that these sequences are well characterized as Markov chains (i.e. that

the probability of a particular vocal element can be calculated from the history

of only a finite number of preceding elements). However, this assumption has

never been explicitly tested. Furthermore, it is unclear how language could

evolve in a single step from a Markovian origin, as is frequently assumed,

as no intermediate forms have been found between animal communication

and human language. Here, we assess whether animal taxa produce vocal

sequences that are better described by Markov chains, or by non-Markovian

dynamics such as the ‘renewal process’ (RP), characterized by a strong

tendency to repeat elements. We examined vocal sequences of seven taxa:

Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile
carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis,

pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orang-

utans Pongo spp. The vocal systems of most of these species are more consistent

with a non-Markovian RP than with the Markovian models traditionally

assumed. Our data suggest that non-Markovian vocal sequences may be

more common than Markov sequences, which must be taken into account

when evaluating alternative hypotheses for the evolution of signalling

complexity, and perhaps human language origins.
1. Introduction
Many species of animals produce vocalizations comprising multiple element

types, combined into complex sequences. Some species have vocal repertoires

of tens or even hundreds of discrete elements; others have only a handful, but

use them to generate a wide variety of combinations. For example, an individual

mockingbird Mimus polyglottos can mimic over 100 distinct song types of different

species, and combine them into diverse sequences [1]. Even the rock hyrax

Procavia capensis, using no more than five discrete vocal elements, creates long

vocal sequences that are rarely the same on repetition [2]. Thus, even species

with few vocal elements can sometimes generate an apparently unbounded

range of possible combinations. Such varied vocal behaviour raises the question

of the role and origin of complexity in animal vocal communication, and the

comparison of vocal complexity across taxa, including human speech.

Complexity seems easy to identify, but hard to define, and even harder to

quantify [3]. Numerous metrics have been suggested to ascribe a value to the

complexity of vocal repertoires. However, these metrics all rely, either explicitly

or implicitly, on assumptions of the underlying process that generated sets of

sequences. For instance, a frequently cited complexity measurement, Shannon

entropy, is only appropriate when each element in a sequence is produced inde-

pendently of all other elements (i.e. an independent production process),
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although the assumption of independence is rarely tested

[4–7]. If vocal sequences are generated by a non-independent

random process, however, Shannon entropy is probably not

suitable for quantifying complexity [8]. Whether vocal

sequences are random independent processes or conform to

some other non-independent stochastic model, identifying

the process operating is an essential task for quantifying

and comparing sequence properties.

Beyond the application to complexity metrics, uncovering

the processes underlying vocal sequence generation in animals

may prove crucial to our understanding of language origins.

Vocal complexity naturally brings to mind human language;

however, the comparison appears to be inappropriate. One of

the main differences between language and non-human

animal communication is the grammar used to produce

sequences. Human language uses ‘context-free grammars’

(CFGs) that are capable of generating recursive sequences and

unbounded correlations [9,10]. By contrast, animal vocal

sequences are usually described as ‘regular grammars’, the sim-

plest class of formal grammars [11], and many researchers have

analysed animal vocalizations as such [12–15]. Regular gram-

mars correspond to finite state automata (FSA), because they

comprise a set of rules that could instruct a simple machine

(automaton) to move between a (finite) number of well-defined

states. In the case of vocal sequences, each state is an acoustic

element. Finite state automata can be deterministic; for

example, syllable ‘A’ is always followed by syllable ‘B’. They can

also be probabilistic (pFSA), in which case multiple possible

transitions between states are governed by fixed probabilities;

for example, syllable ‘A’ is followed by syllable ‘B’ 90% of the
time, and by syllable ‘C’ 10% of the time. In contrast to determinis-

tic finite state automata, different sequences can be generated

each time a pFSA is used. pFSAs are an example of a Markov

chain [16], the most common model used to examine animal

vocal sequences [14]. The pFSA (or Markovian) paradigm

assumes that future occurrences (or the probability of each

future occurrence) are entirely determined by a finite number

of past occurrences. This property of a stochastic sequence is

known as the Markov property. For example, the probability

of the next syllable in a sequence being of type ‘A’ is determined

by the types of the immediately preceding syllables—or at most

some finite number of preceding syllables.

pFSAs remain popular for characterizing animal vocal

sequences [11,14], as the mechanism for producing Markov

chains is easily understood, and simple neural mechanisms

for implementing them have been postulated, based on neu-

roanatomical observations [17,18]. However, Markov chains

are insufficient for producing the complexity of any human

language [9], and there exist grammatical structures that no

pFSA can generate, in particular tree-like syntax such as ‘the

hyrax ate the grass that grew near the rock under the tree’

[11]. Furthermore, no intermediate grammatical form exists

between pFSA models and the CFG of human language [9].

It is not clear what adaptive force could drive the gradual

evolution of CFGs in a species that uses only pFSA vocal com-

munication. In computer science, the addition of register

memory, which provides the ability to count the number of

repetitions of a syllable, appears to be a simple transition

from regular to context-free automata [19]. However, such

models have not been described in animal communication.

Despite the widespread use and simplicity of pFSA, there

are other, non-Markovian stochastic processes, in particu-

lar models where future occurrences are determined by the
(infinite) entirety of preceding events [20]. Non-Markovian pro-

cesses have been used to describe (non-vocal) animal behaviour,

for instance the renewal process (RP) model in the reproductive

behaviour in sticklebacks, canaries and Drosophila [21], and the

psychohydraulic model (PHM) of motivation proposed by

Konrad Lorenz [22] for basic drives such as hunger. Although

we are not aware of any prior work using non-Markovian pro-

cesses to describe vocal behaviour, they seem likely candidates

for vocal production. For example, non-Markovian mechanisms

are able to describe both rapid shifts among vocal elements

and long strings of repeated elements. Here, we test whether

vocal sequences in several species are more consistent with a

Markovian pFSA model, or a non-Markovian process, such as

the RP or PHM. Non-Markovian stochastic processes like

the RP have properties somewhat between the pFSA and the

CFG, and the investigation of language evolution would

not be complete without consideration of other, biologically

realistic sequence-generating mechanisms.

Both RP and PHM models are considered non-Markovian

because they do not rely on finite memory. In RP models, a par-

ticular behaviour (for instance, production of a particular vocal

syllable) is repeated for some probabilistically determined

time. Transitions between syllables of different types are still

defined by a transition table as with a pFSA, but the number

of repeats of each syllable in between transitions may be

drawn from a distribution (e.g. Poisson). Although at first sur-

prising, it can be shown that the sequence generated by such a

process is non-Markovian [23] and cannot be well described by

a pFSA. The RP does not fit the Markovian paradigm of finite

memory, since the Poisson tail is unbounded. The PHM also

relies on a nominally unbounded memory; in this case, the

probability of a particular syllable occurring increases with

the time since its last occurrence, and then falls to a

minimum as soon as the syllable is used.

We gathered vocal sequences from seven taxa: the Bengalese

finch Lonchura striata domestica [24], Carolina chickadee Poecile
carolinensis [25,26], free-tailed bat Tadarida brasiliensis [13], rock

hyrax Procavia capensis [2], short-finned pilot whale Globicephala
macrorhynchus [27], killer whale Orcinus orca [28], and orangutan

Pongo abelii and Pongo pygmaeus wurmbii [29]. For comparison

with a human sequence corpus, we also analysed letter order

in a sample of English (the text of the play Hamlet [30]), although

the intention was not to imply that letter order in human

language has any relevance to the evolution of vocal sequences

in animals. These sequences were coded for distinct vocal

elements (syllables) as described in the above-cited previous

works. We aimed to match these sequences to the most

likely generation model, from a range of possible models of

varying complexity by testing each species’s sequences against

stochastic production from six different prospective processes:

(i) a zero-order Markov process (ZOMP), (ii) a first-order

Markov process (FOMP), (iii) a second-order Markov process

(SOMP), (iv) a hidden Markov model (HMM), (v) an RP and

(vi) a PHM process.
2. Material and methods
(a) Description of the stochastic processes
First, we describe each of these processes in detail. Consider a

sequence S of n elements [1 . . . n], taken from a set of C different

element types. The ZOMP defines a production process where

each element is generated according to a fixed prior probability p,

http://rspb.royalsocietypublishing.org/
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independent of the preceding elements, so that the probability of the

nth element Sn being of type i ¼ [1 . . . C] is given by Pr(Sn ¼ i) ¼ pi.

In the FOMP, the probability that the nth element will be of type i
is determined only by the preceding element j, and the C � C
transition matrix T, which defines the probability that element i
will occur after element j, so that Pr(Sn ¼ i j Sn21 ¼ j) ¼ Tj,i.

Similarly, the SOMP defines the probability of the nth ele-

ment in terms of the two preceding elements: Pr(Sn ¼ i j Sn21 ¼ j,
Sn22 ¼ k) ¼ U( j,k),i. Note that the size of the second-order transition

matrix U is of size C2 � C, which indicates the rapid increase

in sample size required for accurate estimates of the transition

probabilities, as the order of a Markov process increases [31].

The HMM [32] provides a more parsimonious and memory-

efficient representation of higher-order Markov processes, and

has been used successfully to capture the characteristics of

vocal sequences from different species (e.g. [24,33]). As with the

traditional Markov models, in generating an HMM sequence,

successive elements are chosen probabilistically given the current

state. Unlike traditional Markov models, though, in the HMM

the states themselves are not explicitly defined in terms of preced-

ing sequences of a fixed number of elements, but are constructed

from the data by an expectation-maximization optimization

known as the Baum–Welch algorithm [32]. This allows the

HMM to represent a combination of low- and high-order

Markov relationships within the same model.

The RP is defined by a first-order transition matrix, which

determines the pFSA transitions between different elements.

This matrix R is defined in a similar way to the FOMP transition

matrix T, but with zeroes along the main diagonal. Instead,

those self-transitions are generated by a separate stochastic pro-

cess. In this case, we define the number of repeated elements as

being drawn from a Poisson distribution with mean m, with a

separate Poisson distribution for each element type i. A graphical

description of the differences between the RP and Markovian pro-

cesses can be found in [8], and is reproduced in the electronic

supplementary material, figure S1.

Although the PHM has not previously been used to describe

animal communication, it forms a useful counterpoint to the RP.

Whereas in an RP model repeated elements occur more often

than would be expected in a Markov model, in a PHM repeated

elements are less common than expected. We implement a sim-

plified PHM by defining for each element type i a function of

the form Ai(ti) ¼ 1� e�ki ti , where ti is the time elapsed since

element i last appeared, ki is an element-specific rate constant

and Ai is the equivalent of what Lorenz coined the ‘action-

specific energy’ (i.e. the driving motivational force that builds

up within an animal until a particular behaviour is precipitated).

The probability of the next element being of type i is then given

by Pr (i) ¼ Ai=
P

i Ai.
(b) Generation of synthetic sequences
We determined the maximum-likelihood estimator parameters

for each of the processes, given the empirical data. For the

ZOMP, the parameter p is simply the observed prior probabil-

ities of each of the element types i. For the FOMP and SOMP,

the matrices T and U are estimated from the number of occur-

rences of the specific transitions between element types within

the observed sequences.

For the HMM, the parameters of the model are calculated

from the empirical data using the standard Viterbi algorithm

[34]. In any HMM implementation, the number of states is a cru-

cial factor in the model performance; therefore, we optimized the

number of hidden states by minimizing the Akaike information

criterion [35]. To do this, we calculated the log likelihood of gen-

erating the training sequence from the trained HMM and used

the number of hidden states as the number of parameters in

the information criterion calculation.
For the RP, the matrix of transitions between different

elements R is calculated as for the FOMP, and the means m of

the repeated-element Poisson distributions are estimated from

the empirical distributions of number of repeats, separately for

each element type i. For the PHM, the rate constants k are also

estimated from the empirical distributions of the intervals

between elements of the same type.

Having extracted the maximum-likelihood estimator par-

ameters for each model, we used these to generate artificial

sequences based on each model, where the sequence lengths

matched those of the original vocal datasets (figure 1). An over-

view of the dataset sizes and sequence lengths is given in table 1,

and the data themselves are available in the electronic sup-

plementary material (data.xls). For each species, we generated

200 artificial datasets using each of the model types.
(c) Comparison of artificial and recorded sequences
Determining whether a particular sequence, vocal or otherwise,

is Markovian or not is a non-trivial problem. Rigorous tests for

finite-state sequences exist [37], but are not easily applied to data-

sets of limited size. When limited data are available, transition

probabilities are poorly estimated by the small number of tran-

sitions observed. In addition, rare states may be completely

absent. Previous authors have used multiple measures of the

statistical properties of the sequences, such as n-gram distri-

bution [24]. However, these techniques measure aggregate

similarity and do not directly address the similarity of the indi-

vidual sequences. Aggregate comparisons may be an effective

way of comparing very long sequences, where the probability

distribution of n-grams would be expected to be limiting. How-

ever, they would be less accurate when comparing short strings

such as those found in real recordings, and when the processes

generating these strings may not be stationary (for instance,

owing to shifting motivational state and responses to external

events). We used a more direct method by comparing each

simulated sequence with the corresponding original data, and

calculating the edit (Levenshtein) distance [38] between the

pair of sequences. Levenshtein distance measures the minimum

number of insertions, deletions and replacements necessary to con-

vert one sequence into another, and has been used for assessing

vocal syntax in previous studies [2,39,40]. This distance gives

a measure of dissimilarity between the simulated and original

sequences, which we then averaged over the entire dataset. We

calculated the Levenshtein distance between corresponding

sequences, both in the simulated and original data, to generate a

pairwise distance matrix. We then repeated this for 200 randomly

generated sequence datasets for each model and each species.

Having measured the mean Levenshtein distance between a

dataset and the maximum-likelihood estimator prospective

models, we used multi-dimensional scaling [41] to convert the

Levenshtein distance matrix to a series of Cartesian vectors, one

for each sequence, which preserved to the greatest extent possible

the pairwise Levenshtein distances between all of the sequences.

The transformation of the distance matrix to a feature-space

matrix allowed us to use classification algorithms for assigning

the simulated data to the most likely model. For each dataset of

N sequences, we used the MATLAB function cmdscale to convert

the N � N distance matrix to a matrix Y consisting of a series of

N vectors of length p, where p , N is the minimum dimensionality

in which the N points can be embedded (i.e. where the pairwise

distances between the points are conserved). We then reduced

the dimensionality of each vector to length q � p, where q is the

number of eigenvalues E of Y.Y’ for which E is positive, and

the change in successive eigenvalues DE ¼ [E(r) 2 E(r þ 1)]/E(r),
r ¼ [1 . . . p 2 1] is greater than 1%.

We used both a naive Bayesian classifier and a Z-test to deter-

mine from which of the six generation models the original

http://rspb.royalsocietypublishing.org/


zero-order Markov process
(element frequencies p)

different processes and their estimated parameters

first- and second-order Markov
process (transition matrix T)

hidden Markov model

renewal process
(transition matrix T,

Poisson mean m)

candidate sequences for each model 

compare each candidate to original sequence

distance 
metric

(original
versus
model)

(1)

(2)

(3)

(4)

(5)

psychohydraulic model
(decay rate constant k)

A B C
freq 0.2 0.7 0.1

A B C
A 0.2 0.7 0.1
B 0.5 0.1 0.4
C 0.3 0.2 0.5

A B C
Poisson 1.5 4.1 2.3

A B C
A 0.2 0.7 0.1
B 0.5 0.1 0.4
C 0.3 0.2 0.5

p =

m =

T =

T =

A B C
rate 0.14 0.27 0.43k =

sequences
AABACCDAABBAC…
BACCBACBACCAB…
BABAACCBACCBA…

AABBBAAAACCBA
BAACABBACAEBC
CAAAACABBAAAC

BBBAABBCAABBC
ABBBAAAAAACCB
AAAABAAABACCC

BCCBAABBCBBBC
ACBBCBBABABCB
BCABBCABCCBAA

BABBCCABBABAC
CBCBCCBCAABBB
ABBAABBAAAAAC

Figure 1. Flow diagram illustrating the calculation of the distance metric between model and empirical data. Empirical sequences (1) are used to derive maximum-
likelihood estimator parameters for each of the models (2). Using these parameters, simulated sequences are generated (3) and compared to the corresponding
original sequences (4). The average edit distance between these pairs of sequences is a measure of similarity between sequence and model (5).

Table 1. Summary of the datasets used and their characteristics.

species no. element types no. sequences total sequence length source

free-tailed bat

Tadarida brasiliensis

3 71 514 [13]

rock hyrax

Procavia capensis

5 263 3296 [2]

Bengalese finch

Lonchura striata domestica

7 2130 27 858 [24]

Carolina chickadee

Poecile carolinensis

7 4246 37 094 [25,26]

short-finned pilot whale

Globicephala macrorhynchus

20 18 246 [27]

orangutan

Pongo spp.

7 32 373 [29]

killer whale

Orcinus orca

5 8 224 [28]

English language 25 455 3816 [30]
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sequences were most likely to have been drawn. The naive

Bayesian classifier [42] calculated the posterior probabilities of

belonging to each of the six model clusters, in q-dimensional

space, given the distribution of the 200 sequences for each of
the six models. The model with the highest posterior probability

was chosen as the candidate model. We then performed an

additional Z-test, using the MATLAB normfit function, to compare

the mean distance of the original data to 200 simulated samples

http://rspb.royalsocietypublishing.org/


free-tailed bat rock hyrax Bengalese finch Carolina chickadee

short-finned pilot whale orangutan killer whale English

Figure 2. Location of the simulated sequences and original data (black circle) in two-dimensional Levenshtein distance space. Coloured points indicate only the first
30 randomly generated sequences from each model, for clarity: ZOMP (red), FOMP (green), SOMP (blue), HMM (cyan), RP (magenta) and PHM (yellow). Solid
colours indicate the domains of the naive Bayesian classifier for each model type.
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Levenshtein distance
0 2 4

English: ZOMP, p = 0.971

Levenshtein distance

free-tailed bat: RP, p = 0.764

Figure 3. Histograms of the Levenshtein distances of simulated sequences from each other (blue bars) for the best-fit model (indicated in the title of each panel),
and the fitted normal distribution (green line) using the MATLAB normfit function. The red line shows the mean Levenshtein distance of the original data from the
simulated sequences, and the p-value indicates the probability of this mean distance (or greater) having been drawn from the distribution of simulated sequences
(Z-test).
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of the candidate model. We used a Monte Carlo method to take

into account the variation within each model, and gave an esti-

mate of the probability that the observed data were drawn

from a distribution characterized by the 200 simulated samples

of the candidate model. Simulated sequences that are very simi-

lar to each other (low variance) are clustered together in distance

space, whereas simulated sequences with a high variance are

spread out in distance space (figure 2). Therefore, any particular

empirical dataset is more likely to fall within 95% confidence

limits of a high-variance model than a low-variance one.

Higher-order Markov models are, by definition, generaliz-

ations of lower-order models, and in particular, the HMM is a

generalization of any arbitrary-order Markov model. Therefore,

it might appear that an HMM model must necessarily provide
a maximum-likelihood estimator of the model parameters that

is at least as accurate as lower-order models, if less parsimonious

(having a greater number of model parameters). However, we

compared the original sequences directly to the corpus of gener-

ated sequences, so our similarity metric more broadly measured

the appropriateness of each model, and often showed a better fit

from the lower-order models (figure 3). We also performed an

analysis of variance and a post-hoc Tukey test to assess whether

the Levenshtein distances between the original sequences

and their corresponding simulated sequences are significantly

different among the different models.

Given that transition probability estimates are likely to be

inaccurate for small sample sizes, we tested the robustness of

our conclusions by repeating the analyses using smaller subsets

http://rspb.royalsocietypublishing.org/


Table 2. Results of the Bayesian classifier to find the best-fit model to the
observed data. Embedding dimension shows the number of multi-
dimensional scaling dimensions used for the classification, and p-values
indicated by asterisk show that the Z-test rejects the hypothesis that the
data belong to the best-fit model.
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of the empirical data. We sub-sampled each dataset and deter-

mined the best-fit model for each sample size. If the dataset in

its entirety is of sufficient size to estimate the best-fit model,

we expect that the best-fit model would be consistent between

the larger and full sample sizes.
species
best-fit
model

embedding
dimension p-value

free-tailed bat RP 5 0.764

hyrax FOMP 7 ,0.001*

Bengalese finch RP 7 0.824

chickadee RP 8 0.989

pilot whale RP 14 0.586

orangutan FOMP 9 0.026*

killer whale RP 14 0.646

English ZOMP 6 0.914

*p , 0.05.

ocietypublishing.org
Proc.R.Soc.B

281:20141370
3. Results
For the purpose of visualization, the naive Bayesian classifier

is illustrated in figure 2 with a two-dimensional embedding,

rather than a full q-dimensional embedding (although the

two-dimensional embedding is in general insufficient to cap-

ture the distribution of the sequences in Levenshtein distance

space). Figure 2 illustrates the location of the simulated

sequences in distance space, the location of the original

data and the domains of the classifier. Note that the spread

of the simulated sequences varies substantially between

models. For those models where the simulated sequences

are tightly grouped (small Levenshtein distance between

them), the Z-test is more likely to reject the hypothesis that

the original data belong to this model, as the variance of the

simulated sequences is small, and the original data are likely

to fall several standard deviations from the mean of the

simulated cluster. Figure 3 shows the results of the Z-test, com-

paring the distribution of distances within the simulated

dataset of the candidate model and the distance of the original

data from the simulated set. Where the original data distance is

far from the intra-model distances, the data are unlikely to have

been drawn from the model.

Table 2 shows the results of the Bayesian classification for

each of the eight species (including English), along with the

result of the Z-test for the most likely candidate model. The

Shapiro–Wilk test for normality did not reject a normal dis-

tribution for any of the best-fit models, supporting the use

of a Z-test. Electronic supplementary material, table S1

shows the results of the Z-tests for all models. Of the seven

non-human species, none show clear Markovian behaviour.

The Bengalese finch, Carolina chickadee, free-tailed bat,

pilot whale and killer whale appear most similar to the

non-Markovian RP, and the Z-test does not reject the RP

model ( p ¼ 0.824, p ¼ 0.989, p ¼ 0.764, p ¼ 0.586, p ¼ 0.646,

respectively). The orangutan and the hyrax are most similar

to the Markovian FOMP, but for both of these species the

FOMP is a poor fit to the data, and the vocal sequences are suf-

ficiently different that we reject the null hypothesis of belonging

to that model (orangutan p ¼ 0.026, hyrax p , 0.001). Letter

order in a sample of English writing appears to follow a

Markovian ZOMP model ( p ¼ 0.914). The PHM did not

appear to be a good model for any of the datasets tested.

The test of robustness by varying sample size showed that

for all datasets used, except the pilot whale (which passed the

Z-test) and the hyrax (which failed the Z-test), the conclusion

of best-fit models was consistent at larger sub-sample sizes

(see the electronic supplementary material, figure S2).
4. Discussion
Our results show that the vocal sequences of over half of the

species studied—the Bengalese finch, the Carolina chickadee,

the free-tailed bat, the pilot whale and the killer whale—can

be better described as non-Markovian RPs, rather than tra-

ditional first-order, second-order or arbitrary-order HMMs.
We cannot reliably identify a stochastic process generating

the sequences of the hyrax or the orangutan, and it would

be interesting to investigate why these vocalizations are

qualitatively different from the others studied, whether

because of phylogeny, functionality or other constraints.

This diversity of production models is quite unexpected, as

previous works have overwhelmingly used the Markovian

paradigm as a starting point for the analysis of animal vocal

sequences [11,14]. Although putative Markovian generation

processes are popular, partly because of their simplicity and

partly because of the clear role that they fill in the Chomsky

hierarchy [9,10], it is inappropriate to assume that they ade-

quately describe the true generation process simply because

of their utility. Indeed, it seems simplistic to assume that ani-

mals would primarily generate their vocal sequences based

solely on a small number of preceding elements. RPs, in

which a certain element is repeated until the animal is ‘tired

of it’ (whether physically, cognitively or only figuratively),

are alternative models, and indeed we have shown the RP to

be a better approximation for the vocalizations of most of

the species we examined.

Repetition has long been recognized as a feature of animal

behaviour (e.g. eventual variety in birdsong [43] and non-

vocal behavioural repetition [21]), although the mechanisms

responsible may be diverse [44,45]. Mating and aggressive

displays make use of repetition to augment the magnitude

of the display signal [44], and repeated displays appear

more effective in attracting a mate or deterring a rival in

species including songbirds [46] and fallow deer Dama
dama [47]. However, a trade-off must exist between the

benefit of signal repetition and energetic costs or physiologi-

cal constraints [46,48]. Such a trade-off may be a proximal

cause of a non-monotonic distribution of the number of

repeats, such as the Poisson distribution of the proposed

RP, which appears to be consistent with our empirical data.

Characterizing vocal sequences as Markov chains places

animal vocal sequences in the category of regular grammars

and distinguishes them from the more complex context-free

structure of human language. However, we have shown that

the oft-cited conclusion that all animal communication

http://rspb.royalsocietypublishing.org/
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conforms to regular grammars [11,18] is misleading. Indeed,

little mention has been made in the literature of non-Markovian

alternatives to the pFSA grammar. No attempt has been made

until now to test whether animal vocal sequences are indeed

most likely to be generated by pFSAs, or instead by some

other, non-Markovian stochastic process. It has been pointed

out [49,50] that insufficient attention has been given to the

different levels of complexity in pFSAs of different types (i.e.

different orders versus HMMs), and we extend this obser-

vation to non-Markovian processes. Claims that certain

species such as European starlings Sturnus vulgaris perceive

vocal sequences with a grammar more complex than regular

grammar have met with scepticism [36,51,52]. However, our

findings do not point to greater grammatical complexity, but

to different grammatical processes, something so far barely

examined in the literature.

For this comparison, we have used a small but diverse set

of data. Some of the datasets, such as the sequences obtained

from orangutans, were necessarily rather small because of the

difficulty of working in the wild with an inaccessible, endan-

gered and semi-solitary species. The sequences from the pilot

whales potentially contained biasing information, since the

audio recorders attached to the animals could also detect

the calls of other individuals. However, such a bias would

tend to produce a more independent (ZOMP-like) sequence,

whereas our findings for the pilot whale indicated a low

probability of independent generation. The pilot whale data

were also unusual in that they consisted primarily of stereo-

typed calls, with few non-stereotyped calls; the occurrence

of such sequences is probably highly context-dependent

[27]. This could indicate either atypical behaviour or, poss-

ibly, unusually communicative behaviour. We believe that,

despite these limitations, inclusion of these species helps to

broaden the scope of our comparison, since primates and

cetaceans are mammalian orders recognized as having par-

ticularly sophisticated acoustic communication.

Estimating the parameters of probabilistic models from

small sample sizes is necessarily problematic [53,54]. For

example, an FOMP transition table for the English alphabet

is a matrix of size 26 � 26 ¼ 676 cells, and assuming that at

least 10 observations are required to provide a reasonable

estimate of each transition probability, then at least 6760 tran-

sitions must be made. In practice, the required number of

observations is much more, as some transitions may be

rarely observed. For an SOMP, more than 105 observations

are required. In most cases, our data fall far short of the desir-

able number of observations. However, reasonable estimates of

model parameters can often be made with surprisingly small

sample sizes [8,54]. The results of our test for robustness

show that, with the exception of the pilot whale data, wherever

a clear best-fit model is indicated, the chosen model is consist-

ent between larger sub-sample sizes, and we believe that this is

an indication of reliability of our conclusions.

We found that the letter order in the English language is

best modelled by a ZOMP, whereas previous work has indi-

cated that an SOMP is a more appropriate model [55].

However, English is clearly neither a ZOMP nor an FOMP,

and so the resemblance of a corpus of English letters to one

or the other may be more dependent on the metric used to

assess similarity, rather than the underlying stochastic pro-

cesses. Information-theoretic approaches [37] naturally lean

towards the second-order Markovian paradigm; for example,

because the letter ‘t’ is so often followed by the letter ‘h’.
However, we believe that our approach of comparing the

string similarity of sequences generated by putative models

provides a more useful comparison in the field of animal

communication research, although possibly less useful for

analysing human texts.

To the best of our knowledge, no extant species other than

humans have a true language, with an unlimited ability to com-

municate abstract concepts [56]. Although many non-human

animal species have essential precursor abilities, such as vocal

production learning [57], contextual reference [58–61] and

non-semantic syntax [2,27,62], only humans have a grammatical

structure that is sufficiently complex for true linguistic potential

[56]. Since no non-human species demonstrate proto-linguistic

grammars, proposed mechanisms for the evolution of language

in humans remain speculative (e.g. [63]). Among theories of

language origin that posit language evolving from systems

like extant non-human animal communication, it is debated

whether language arose as a gradual adaptation of simpler

vocal communication systems [64] or gestural systems [65], or

whether essential linguistic abilities arose suddenly (or at least

very rapidly) [11]. Although a conceptual path between regular

and supra-regular grammars is well accepted in the computer

science literature [19], an important question is whether an

incremental evolutionary path exists between the pFSA regular

grammars that heretofore were considered common in animals,

and the CFG linguistic structures that exist in humans. The incre-

mental hypothesis must explain the lack of ‘proto-languages’ in

the animal kingdom, representing a link between animal and

human linguistic capabilities [66]. Conversely, saltationary or

rapid-evolution hypotheses must provide a convincing and evo-

lutionarily plausible mechanism that could explain the

qualitative gap between the regular grammar of animal com-

munication and the CFG of human language. Examples

would include metric (timing) features [11], or a synthesis of

multiple regular grammars [63] as a ‘bridge’ between the two

capabilities. Recent work has indicated that complex syntax

can develop as the result of simple neurological changes; for

example, in Bengalese finches, which have syntax qualitatively

more complex than their wild ancestors [67].

Our findings appear to indicate that pFSA is not the ubiqui-

tous nature of animal vocal sequences, and this requires

re-evaluation of both gradual and saltational hypotheses.

Application of our analysis to more species, and the use of

more putative non-Markovian stochastic models, may reveal

intermediate steps between known Markovian animal gram-

mars and human CFGs, narrowing the gap between human

and non-human animal communicative abilities.
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