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Generative models have diverse applications, including language processing and birdsong analysis. In this study, we demonstrate
how a statistical test, designed to prevent overgeneralization in sequence generation, can be used to infer minimal models for
the syllable sequences in Bengalese finch songs. We focus on the partially observable Markov model (POMM), which consists of states
and the probabilistic transitions between them. Each state is associated with a specific syllable, with the possibility that multiple
states may correspond to the same syllable. This characteristic differentiates the POMM from a standard Markov model, where
each syllable is linked to a single state. The presence of multiple states for a syllable suggests that transitions between syllables
are influenced by the specific contexts in which these transitions occur. We apply this method to analyze the songs of six adult
male Bengalese finches, both before and after they were deafened. Our results indicate that auditory feedback plays a crucial role
in shaping the context-dependent syllable transitions characteristic of Bengalese finch songs.

Significance Statement

Generative models are proficient at representing sequences where the order of elements, such as words or birdsong syllables,
is context-dependent. In this study, we demonstrate that a probabilistic model, inspired by the neural encoding involved in
song production in songbirds, effectively captures the context-dependent transitions of syllables in Bengalese finch songs. Our
findings reveal that the absence of auditory input, as observed in deafened Bengalese finches, reduces these context
dependencies, indicating that auditory feedback is essential for establishing context-dependent sequencing in their songs.
This method can be applied to various behavioral sequences, offering valuable insights into the neural mechanisms underlying
the statistical patterns that govern these sequences.

Introduction
Behavioral sequences, ranging from human language to birdsong,
follow probabilistic rules. The success of large language models,
such as GPT, demonstrates that the transition probabilities
between words in a sentence are highly influenced by the preced-
ing words (OpenAI, 2023). However, it remains unclear how such

context-dependent probabilistic rules are encoded in the brain.
Studies of birdsongs provide insights into this issue. Variable songs
of species such as the Bengalese finch and canary exhibit context-
dependent syllable transitions (Okanoya, 2004; Jin and
Kozhevnikov, 2011; Jin, 2013;Markowitz et al., 2013), and the neu-
ral correlates of these dependencies have been studied using
advanced imaging techniques to visualize the neural activity in
the brain areas controlling the song (Cohen et al., 2020).

The probabilistic rules governing syllable transitions, or song
syntax, can be effectively modeled using state transition models
(Okanoya, 2004; Jin, 2013; Markowitz et al., 2013). The partially
observable Markov model (POMM) (Jin and Kozhevnikov,
2011), which consists of states associated with individual syllables
and probabilistic transitions between them, is closely related to
the neural control of singing in the sensory-motor area HVC
(used as a proper name) in songbirds (Fee et al., 2004; Jin,
2009). Experiments have demonstrated that a synaptic chain
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network, which supports the propagation of ultra-sparse burst
spike sequences (Hahnloser et al., 2002; Long et al., 2010;
Egger et al., 2020), drives downstreammotor neurons to produce
a specific syllable (Fee et al., 2004). In a POMM, each state
corresponds to one such “syllable-chain”. Transitions between
the states generate syllable sequences. A single syllable can be
associated with multiple states, allowing the Markovian dynam-
ics of state transitions to produce non-Markovian, context-
dependent syllable transitions (Jin, 2009; Jin and Kozhevnikov,
2011). Context dependency is, therefore, closely related to state
multiplicity.

Auditory feedback plays an important role in shaping the syl-
lable sequences of Bengalese finch songs (Okanoya and
Yamaguchi, 1997; Woolley and Rubel, 1997, 2002; Sakata and
Brainard, 2008; Wittenbach et al., 2015). Within a few days after
deafening, the syllable sequences become more random
(Okanoya and Yamaguchi, 1997; Woolley and Rubel, 1997).
Additionally, there is a significant decrease in syllable repetitions
(Wittenbach et al., 2015). When altered auditory feedback is pro-
vided to Bengalese finches during singing, particularly at the
branching points of syllable transitions, it can significantly influ-
ence the probabilities of these transitions (Sakata and Brainard,
2006, 2008). But it is unclear how auditory feedback impact the
context dependencies of syllable transitions in the song of the
Bengalese finch.

In this paper, we develop a novel statistical method for
inferring POMMs from a set of observed syllable sequences.
This principled method is based on an interpretable statistical
measure and is fully automated to infer the POMM with the
minimal number of states while remaining compatible with
the observed syllable sequences. It represents a significant
advancement over the previous heuristic approach (Jin and
Kozhevnikov, 2011), which required manual interventions
and did not guarantee the inference of a minimal POMM.
Using this new method, we construct minimal POMMs from
the songs of six Bengalese finches both before and shortly after
deafening. Our results show that deafening reduces state mul-
tiplicity in the POMMs, indicating that auditory feedback plays
a crucial role in creating context dependencies in Bengalese
finch songs.

Materials and Methods
Dataset. The data set in this work was previously used to analyze syl-

lable repetitions in Bengalese finch songs (Wittenbach et al., 2015)
(accessible for download at http://www.dezhejinlab.org/SharedData/).
Specific details regarding the recording of songs, the annotation of sylla-
bles, the procedure for deafening, as well as the Ethics Statement, are
available in the published paper (Wittenbach et al., 2015).

Deafening was performed by bilateral cochlear removal, with the
completeness of the removal verified through visual inspection under a
dissecting microscope. Songs from the deafened Bengalese finches
were recorded 2 to 4 days post-deafening (Wittenbach et al., 2015).
The data used in this study were collected from six male adult
Bengalese finches, identified as bfa14, bfa16, bfa19, bfa7, o10bk90, and
o46bk78, both before and after deafening.

Within the data set, syllables are labeled from a to l and from x to z.
Ambiguous syllables are denoted by the symbols 0 and −, and these are
excluded from the analysis. Typically, Bengalese finch song bouts begin
with short introductory notes, labeled as i, j, and k. Syllable sequences are
defined as segments of syllables bracketed by periods of introductory
notes and the end of the recordings.

POMM. A POMM is characterized by a state vector V= [α, ω, s3,
s4, …, sn], where s1 = α and s2 =ω represent the start and end states,

respectively. Here, n denotes the total number of states, and for i=3, …,
n, si corresponds to the syllable symbol associated with the ith state. It is
important to note that the same syllable symbol can occur multiple times
within the state vector.

Transitions between these states are governed by a transition matrix
T, where each element Tij specifies the probability of transitioning from
state i to state j. There are two constraints: no transitions lead back to the
start state (Ti1 = 0), and no transitions occur from the end state (T2j= 0).

The sequence generation from a POMM begins at the start state. At
each state i, the next state j is selected based on the probabilities Tij from
among the potential states (s2 to sn). Once the next state is selected, the
symbol sj is appended to the sequence. This process continues until the
end state is reached, at which point the sequence generation terminates.

Markov model. A Markov model can be viewed as a special case of a
POMM, where each syllable symbol appears only once in the state vector.
In this case, the transition probabilities T are calculated as follows:

Tij =
Nij

Ni
,

where Ni represents the total number of occurrences of the state (or sylla-
ble) si in the set of syllable sequences Y, andNij denotes the total number of
times the subsequence si sj (i.e., the transition from si to sj) appears in Y.

Additionally, note that:

Ni =
∑n

j=1

Nij.

Therefore, to compute the transition probabilities, it is only necessary to
determine the values of Nij.

Baum-Welch algorithm. Due to state multiplicity, computing the
transition matrix T for a POMM from the set of syllable sequences Y
is more complex than for a standard Markov model, though the general
approach remains similar. The process begins by assigning random state
transition probabilities. Using these initial probabilities, the state transi-
tion sequences corresponding to the syllable sequences in the set Y are
determined. The transition probabilities are then updated as follows:

Tij =
Nij

Ni
,

where Ni represents the number of times state i appears in the state
sequences, and Nij is the number of times the subsequence of states ij
appears. The procedure is repeated with updated transition probabilities
T until the change in T becomes smaller than 10−6. Given that the final
result may depend on the initial randomization of T, the process is
repeated 100 times with different random seeds, and the transition
matrix T that maximizes the probability of generating Y from the
POMM is selected.

This computation is efficiently implemented using the Baum-Welch
algorithm (Rabiner, 1989). Consider a sequence y1 y2 · · · yt · · · ym in the
set Y, where t is the step within the sequence, and m is the maximum
length of the sequence. The algorithm is divided into three steps:

1. Forward Probability αi(t): This is the probability of being at state i at
step t, given that the preceding sequence is y1 y2 · · · yt−1. It is com-
puted iteratively using

ai(t + 1) = di(yt+1)
∑n

j=1

aj(t)Tji,

where the initial conditions are α1(0) = 1 and αj(0) = 0 for all j≠ 1.
The indicator function δi(yt+1) = 1 if the symbol yt+1 matches the
symbol si associated with state i, and δi(yt+1) = 0 otherwise.
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2. Backward Probability βi(t): This is the probability of being at state i at
step t, with the subsequent sequence being yt+1,…, ym. It is calculated
iteratively using:

bi(t) = di(yt)
∑n

j=1

Tijbj(t + 1).

The initial conditions are β2(m+ 1) = 1 and βj(m+ 1) = 0 for all j≠ 2.
3. Calculation of Ni and Nij: The forward and backward probabilities

αi(t) and βi(t) must be calculated for each sequence in Y. The num-
ber of transitions from state i to state j is given by

Nij =
∑

Y

∑m

t=1

ai(t)Tijbj(t + 1).

For a given sequence y1 y2 · · · ym, the probability that the POMM
generates the sequence is

Py = a2(m+ 1),

which corresponds to the forward probability of reaching the end
state at step m+ 1.

The total probability for the set Y is

PY =
∏

y[Y

Py.

It is often more convenient to work with the log-likelihood, expressed as
follows:

LY = log PY =
∑

y[Y

log Py.

By iteratively updating the transition probabilities based on the forward and
backward probabilities, the Baum-Welch algorithm adjusts T to increase
the likelihood of reproducing the set of sequences Y (Rabiner, 1989).

Statistical tests. For comparing distributions of paired data, we use
the Wilcoxon signed-rank one-side test, implemented in the Python
module scipy via scipy.stats.wilcoxon (Virtanen et al.,
2020). This test is non-parametric, hence there is no degree of freedom.
Instead, the median difference is reported.

State merging. States i and j associated with the same syllable can be
merged by eliminating state j. The transition probability from state i to
state k (k≠ i, j) is recomputed as follows:

Tik =
Nik + Njk

Ni + Nj
.

Here, Ni and Nj represent the number of times states i and j are visited,
respectively, andNik andNjk are the number of times the transitions from
state i to state k and from state j to state k occur. These counts are initially
obtained during the process of constructing a higher-order Markov
model that is statistically compatible with the observed syllable sequences
(see Results).

The transition probability from state k (k≠ i, j) to state i is updated
as follows:

Tki � Tki + Tkj.

The number of times state i is visited is updated to

Ni � Ni + Nj.

After these updates, state j is removed from the POMM.

Results
The dataset of songs from six Bengalese finches, both before and
shortly after deafening, was used in a previous study focusing on
the phenomenon of syllable repetitions, particularly the influence
of auditory feedback on these repetitions. Our findings suggest
that long sequences of repeated syllables are best described by a
non-Markovian process (Jin and Kozhevnikov, 2011). This pro-
cess is characterized by a gradual decrease in the probability of a
syllable repeating as the sequence progresses. We identified the
underlying neural mechanism as synaptic adaptation in the audi-
tory feedback pathway. Specifically, strong and adaptive auditory
feedback is crucial for sustaining long syllable repetitions.
Supporting this, we observed that removing auditory feedback
through deafening led to a significant shortening of syllable rep-
etitions (Wittenbach et al., 2015). It is important to note, how-
ever, that our analysis was specifically confined to syllable
repetitions and did not extend to other aspects of song structure.

In this work, we investigate the context dependencies in the syl-
lable sequences of six Bengalese finches and how auditory feedback
might contribute to these dependencies using POMMs. Since syl-
lable repetitions are best described by non-Markovian state transi-
tion models, we focus on the non-repetitive versions of the
sequences, where only the first instance of any repeated syllable
is retained. For example, if the syllable sequence is ABBBC, then
the non-repetitive version is ABC. Throughout the rest of this
paper, the term “syllable sequences” specifically refers to these
non-repetitive versions. Each syllable sequence is typically pre-
ceded by a variable number of introductory notes, which are
excluded from the analysis (Materials and Methods).

POMM for syllable sequences
A POMM for a set of syllable sequences consists of states and tran-
sitions between them. Each state is associated with a single syllable.
Additionally, there are a start state and an end state. State transi-
tions begin at the start state, with the next state being selected
based on the transition probabilities from the current state. The
process stops once the end state is reached. A path from the start
state to the end state generates one syllable sequence.

A POMM is visualized using directed graphs (Fig. 1) generated
with the software Graphviz (Ellson et al., 2001). Following the con-
vention introduced previously (Jin and Kozhevnikov, 2011), the
start state is represented as a pink node marked with the symbol
α. All other states are shown as nodes labeled with their associated
syllables, and syllables with multiple states are marked in red font.
A state’s color is cyan if it can transition to the end state and white
otherwise. To reduce clutter, the end state is not displayed. When
necessary, the symbol ω is used to denote the end of sequences.

State transitions are depicted with arrows color-coded
according to their transition probabilities P. Strong transitions
(0.5≤P≤ 1) are shown in red; medium transitions (0.1≤P <
0.5) in green; and weak transitions (0.01≤ P < 0.1) in gray. To
further reduce clutter, only transitions with P≥ 0.01 are shown.

Two types of context dependency
We construct two simple examples to demonstrate the existence of
different types of context dependencies in syllable transitions
(Fig. 1). These examples involve five syllables: A, B, C, D, and E.
The transitions from C to either D or E depend on whether C is
preceded by A or B. Example 1 illustrates a scenario where a sylla-
ble transition is either allowed or prohibited depending on the
context. The observed sequences consist of two unique sequences:
ACD and BCE, eachwith a probability of 0.5. The transitionC→D
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occurs only when C is preceded by A, while the transition C→E
occurs only when C is preceded by B. Consequently, sequences
such as ACE and BCD are not observed. We refer to this form
of context dependence as type I context dependence.

Example 2 illustrates a case where context dependence is
reflected in the transitionprobabilities. The observed sequences con-
sist of four unique sequences: ACD with a probability of 0.4, ACE
with a probability of 0.1, BCD with a probability of 0.1, and BCE
with a probability of 0.4. The transitions C→D and C→E occur
regardless of the preceding syllable. However, the transition proba-
bilities vary depending on whether A or B precedes C. We refer to
this type of context dependence as type II context dependence.

A simple model that can be inferred from the observed
sequences is the Markov model, where each syllable is associated
with a single state. However, in both examples, the Markov
model is too simplistic to capture the context dependencies pre-
sent in the transitions.

The Markov model for Example 1 can be inferred by calculat-
ing transition probabilities from the observed sequences (Fig. 1).
The sequences begin with either A or B, each with equal proba-
bility, so the start state transitions to the A-state or B-state with
a probability of 0.5. Both of these states then transition to the
C-state with a probability of 1. Since C can be followed by either
D or E, the C-state transitions to the D-state or the E-state, each
with a probability of 0.5. Finally, the D-state and the E-state tran-
sition to the end state with a probability of 1.

The Markov model fails because it overgeneralizes. Starting
from the start state, there are four possible state transition paths,
generating the sequences ACD, ACE, BCD, and BCE, each with a
probability of 0.25. However, the sequences ACE and BCD are
not observed in the data.

The issue of overgeneralization can be quantified using the con-
cept of sequence completeness Pc, which is defined as the total
probability of the model generating all unique sequences in the
observed set:

Pc =
∑M

i=1

Pi,

where M is the number of unique sequences, and Pi is the proba-
bility of the ith unique sequence as computed by the model. The
degree of overgeneralization is represented by 1−Pc, which corre-
sponds to the total probability of the model generating sequences
that are not present in the observed set. For Example 1, the unique

sequences in the data are ACD and BCE. The Markov model
assigns a probability of 0.25 to each of these sequences.
Therefore, we calculate Pc=0.5.

To avoid overgeneralization, we need to infer a more complex
model, specifically a POMM where C is associated with two dis-
tinct states. The A-state and the B-state transition separately to
these respective C-states (Fig. 1). This POMM generates the two
sequences ACD and BCE, each with a probability of 0.5, resulting
in Pc=1 for the observed set. In other words, the model does not
overgeneralize.

In Example 2, the Markov model fails not because of overgen-
eralization but due to misaligned probabilities with the data
(Fig. 1). While the model generates all observed unique sequences,
resulting in Pc=1, it incorrectly represents the sequence probabil-
ities. The less frequent sequencesACE and BCD, which each have a
probability of 0.1 in the data, are assigned a higher probability of
0.25 by the model. Conversely, the more probable sequences
ACD andBCE, eachwith a probability of 0.4 in the data, are under-
represented in the model with a probability of 0.25.

A simple measure of the differences in probabilities is the total
variation distance (Gibbs and Su, 2002), defined as follows:

d = 1
2

∑M

i=1

|Pi,o − Pi,m|.

Here,

Pi,o = Ni

N

represents the observed probability of the ith unique sequence,
where Ni is the number of times the sequence appears and N is
the total number of observed sequences.

On the other hand, Pi,m is the normalized probability of the
sequence computed with the model, defined as follows:

Pi,m = Pi
Pc

.

The normalization ensures that

∑M

i=1

Pi,m = 1,

Figure 1. Two examples illustrating two types of context dependency. In Example 1, there are two unique sequences with equal probabilities (shown in parentheses) in the observed set. The
Markov model overgeneralizes, resulting in two unobserved sequences and a sequence completeness of Pc= 0.5. The POMM with two states for syllable C avoids overgeneralization, achieving
Pc= 1 and Pb = 1. In Example 2, the observed set comprises four unique sequences, with two being more frequent. The Markov model fails to capture these frequency differences (total
variation distance d= 0.3), even though Pc= 1. However, the POMM with two states for syllable C successfully captures the probabilities of the unique sequences, indicated by d= 0 and
Pb = 1. The color scheme for transition probabilities P in POMM diagrams: red arrows P≥ 0.5; green arrows 0.5 > P≥ 0.1; gray arrows 0.1 > P≥ 0.01.
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which is necessary because we are comparing Pi,mwith Pi,o, where∑M
i=1 Pi,o = 1. The value of d is 0 when the probabilities perfectly

match, and 1 for a complete mismatch.
In Example 2, the Markov model has a total variation distance

of d= 0.3. A more complex model, which includes two distinct
states for C (as shown in Fig. 1), achieves d= 0, indicating that
it effectively captures the context-dependent changes in transi-
tion probabilities.

The total variation distance may not fully reveal type I context
dependence. In Example 1, the Markov model generates the two
observed sequences, ACD and BCE, each with a probability of
0.25. After normalization, these probabilities become 0.5. As a
result, the Markov model yields d= 0.

To capture both type I and type II context dependencies, we
combine Pc and d into a single measure:

Pb = (1− b)Pc + b(1− d),

where β is the weight assigned to the total variation distance and
is a value between 0 and 1. A perfect model would have Pb = 1.
We refer to this combined measure as the augmented sequence
completeness.

As we will show below, model selection based on Pb is not
sensitive to the value of β, provided it is neither too close to 0
nor 1. A suitable choice of β should balance the variances of Pc
and d to ensure that the variance of Pb is not dominated by either
component. Since Pc is a sum of probabilities, it tends to be less
sensitive to measurement errors, as positive and negative errors
often offset one another. In contrast, d, which aggregates the
absolute values of errors, is likely to bemore sensitive tomeasure-
ment inaccuracies. For this reason, we choose β < 0.5 to account
for the difference in sensitivities. In this study, we set β= 0.2. This
consideration is particularly important when the number of
observed sequences is small. When a large number of sequences
are available, probability measurements are more accurate, mak-
ing the specific choice of β less critical.

The POMMs with two states for C in both Example 1 and
Example 2 yield Pb = 1, regardless of the chosen value for β.

Inference of a minimal POMM from observed sequences
In this section, we demonstrate how a POMM can be inferred
from a set of observed syllable sequences using a statistical test.
The inferred POMM is considered minimal in the sense that it
contains the fewest number of states among all POMMs that
are statistically compatible with the observed sequences.

To illustrate this process, we first construct a “ground-truth”
POMM, from which we generate a set of “observed sequences”
(Fig. 2). We then apply the inference process to determine the
minimal POMM. Finally, we compare the inferred POMM
with the original ground-truth POMM for validation.

Statistical test of a POMM
To identify a POMM that aligns with the observed set of syllable
sequences, it is necessary to develop a method for statistically
evaluating the model’s fit. This evaluation can be framed as a
hypothesis test, where the null hypothesis posits that the
observed set is generated by the POMM. The measure Pb can
be used for this evaluation. Ideally, the Pb value for the observed
set, as computed with the POMM, should be 1. This would indi-
cate that the POMM accurately generates all the unique
sequences present in the observed set and does not produce
unobserved sequences. Additionally, it suggests that the proba-
bilities of these unique sequences are consistent with the

observations. However, in practice, due to the finite number N
of observed sequences, the observed set might not include all
the sequences that a bird is capable of producing. As a result, a
Pc value less than 1 could be due to the limited size of N, rather
than overgeneralization by the model. Moreover, discrepancies
in the probabilities of the unique sequences may also arise
from imprecise probability measurements when N is finite.

To account for the finite N effect, we generate random sets of
N sequences from the POMM. For each generated set, we com-
pute Pb using the POMM. The distribution of Pb for these gen-
erated sets helps assess the likelihood that the observed Pb is part
of this distribution. Specifically, we calculate the probability p
that the observed Pb exceeds the Pb values of the generated
sets. If p < 0.05, we infer that the observed Pb is unlikely to
have been drawn from this distribution, then leading to the rejec-
tion of the POMM as a model for the observed set. Conversely, if
p≥ 0.05, the POMM is not statistically rejected and is therefore
accepted as a model for the observed set. To construct the Pb dis-
tribution, we generate 10,000 random sets of N sequences from
the POMM.

To demonstrate this process, we use the “ground truth model”
shown in Figure 2a. This model consists of two states for syllables
A and C, and one state for each of the syllables B, D, and E. The
model can generate seven unique sequences with the following
associated probabilities: A with a probability of 0.1, ACD with
a probability of 0.36, ACE with a probability of 0.04, BCD with
a probability of 0.05, BCE with a probability of 0.2, BAE with a
probability of 0.125, and BA with a probability of 0.125. The
sequences produced by the ground truth model exhibit both
type I and type II context-dependent syllable transitions.

The ground-truth model is evidently non-Markovian. Ideally,
when N is large, the Markov model inferred from the observed
sequences should be rejected by the statistical test using Pb. To
demonstrate this, we generate three sets of observed sequences
from the ground-truth model with N= 10, N= 30, and N= 90.
For each set, we infer the Markov models and subsequently
test their fit.

Markov models are inferred by analyzing the observed
sequences. We count the number of transitions between syllables,
as well as transitions from the start state to the syllables and from
the syllables to the end state. These counts are then converted
into transition probabilities through normalization (see
Materials and Methods). The Markov model inferred from the
set with N = 30 is illustrated in Figure 2b. To assess the validity
of a Markov model, we generate 10,000 random sets of N
sequences using the model. For each set, we compute Pb, result-
ing in a distribution of Pb, as shown in Figure 2c. We then com-
pare this distribution to the Pb of the observed set.

As N increases, the distribution of Pb shifts towards 1. This
shift occurs because a larger N ensures that most of the unique
sequences the model can generate are included in a generated
set, leading to Pc→ 1 for these sets. Additionally, the probabilities
of the unique sequences computed from the generated sets align
more closely with those calculated from the model.

However, the Pb values for the observed sets, indicated by
red lines in the figure, remain relatively unchanged as N
increases. This stability arises because the observed sets are
generated using the ground-truth model, which is
non-Markovian. Therefore, increasing N does not improve Pc
for the observed sets. As N grows, the Pb for the observed
sets consistently falls below that of the generated sets, indicat-
ing that the Markov models are not statistically compatible
with the observed sets.
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In the examples shown in the figure, the p-values are p= 0.3
for N= 10, p= 0.01 for N= 30, and p= 0 for N= 90. The results
may vary due to differences in the samples of the “observed
sequences” generated from the ground-truth model. To illustrate
these fluctuations, we repeated the process 100 times for each N.
For N= 10, the results were p= 0.3 ± 0.3 (mean ± standard devia-
tion); for N= 30, p= 0.01 ± 0.03; and for N= 90, p= 0 ± 0.

Using the criterion of p < 0.05, the Markov model is rejectable
for N= 30 and N= 90. However, for N= 10, the model cannot be
rejected, despite the ground-truth model being non-Markovian.
This occurs because, whenN is too small, there is insufficient evi-
dence to conclusively reject the Markov model.

If the ground-truth model is Markovian, increasing N does
not lead to the rejection of the Markov model, then which is con-
sistent with expectations.

While the Markov model is used as an example, the statistical
testing process based on Pb can be applied to evaluate any
POMM.

Searching the state space for a minimal POMM
Using the statistical test described above, we can identify the
minimal POMM that is statistically compatible with a set of
observed sequences. This is achieved by exploring the state space
of possible POMMs. First, we identify a POMM that passes the
statistical test. Then, we simplify themodel bymerging and delet-
ing states until the POMM is reduced to its simplest form that
still satisfies the statistical test requirements.

To search for a POMM compatible with the observed set, we
begin by constructing higher-order Markov models. For the
mth-order Markov model, we first flank each sequence in the

Figure 2. An example for statistically testing and inferring POMMs from a finite set of observed sequences. a, The ground truth POMM from which the observed sequences are generated. The
numbers near the arrows are the transition probabilities. b, The Markov model for a set of N= 30 observed sequences. c, Statistical tests of the Markov models for N= 10, 30, 90. The gray bars
are the distributions of Pb for the generated sets. The red lines are the Pb for the observed sets. d, POMMs inferred from the observed sets, and distributions of the number of states in the
POMMs for 100 runs. e, The impact of the choice of β. The median number of states in the inferred POMMs for various values of β.
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observed set with the start symbol α and the end symbol ω.
We then collect unique subsequences of lengthm, as well as sub-
sequences up to length m that start from α. For example, with
m= 2, the sequence αA C Dω yields the unique subsequences: α,
αA, AC, CD, and Dω.

Each unique subsequence is assigned to a state. The subse-
quence α is assigned to the start state, while all subsequences end-
ing with ω are assigned to the end state. The remaining unique
subsequences are assigned to distinct states, with the final syllable
of each subsequence serving as the symbol for that state. This
assignment transforms each observed sequence into a sequence
of states, and the transition probabilities between these states
are calculated by counting the number of transitions. This
method produces a POMM equivalent to the mth order
Markov model.

We apply the statistical test to determine if the POMM satisfies
the acceptance criterion of p≥ 0.05. Starting from m=1, which
corresponds to the basicMarkovmodel, we incrementally increase
m until the POMM is accepted.

We next simplify the POMM by merging and deleting states
associated with the same syllable. State transition probabilities
are re-computed based on the counts of transitions between
states (see Materials and Methods) (Jin and Kozhevnikov,
2011). A merge is retained if the resulting POMM passes the sta-
tistical test. After no further merges are accepted, we proceed to
reduce the POMM through state deletion. If a syllable is associ-
ated with more than one state, then we reduce the number of
states for that syllable by one. Transition probabilities between
states are then computed by maximizing the log-likelihood that
the model generates the observed sequences, using the Baum–
Welch algorithm (see Materials and Methods) (Rabiner, 1989).
To avoid local minima in the algorithm, we perform 100 runs
with random seeds and select the run with the highest
log-likelihood. If the reduced POMM is accepted, the deletion
process continues. Through this state reduction procedure, we
obtain a POMM with the minimal number of states that passes
the statistical test based on Pb.

After state reduction, we simplify the transitions between the
states in the POMM. We systematically remove each transition
and recalculate the transition probabilities using the Baum–
Welch algorithm. If the log-likelihood of the observed sequences
after a cut remains above a predefined threshold, the cut is
accepted; otherwise, the transition is retained. The threshold is
set to the log-likelihood before the cuts, minus an estimate of
the fluctuation in the log-likelihood due to inaccuracies in com-
puting the transition probabilities. This estimate is the standard
deviation of the log-likelihoods before the cuts, calculated from
the 100 runs of the Baum-Welch algorithm with random seeds.
If the POMM after the cuts does not pass the statistical test,
then the cuts are reversed.

Evaluation with the ground truth model
We evaluate the above procedure using the ground truth model
(Fig. 2a). A set of N “observed sequences” is generated from the
ground truth model, from which we infer the minimal POMMs.
To assess the impact of sampling, this process is repeated 100
times. The results for N= 10, N= 30, and N= 90 are shown in
Figure 2d. We present typical inferred POMMs along with the
distributions of the total number of states in the POMMs inferred
from the 100 sets.

For N= 10, the total number of states is predominantly 5, and
the Markov model is generally accepted. Some models have 4
states, as syllables D or E may not appear in the observed

sequences due to the small sample size. When N= 30, the total
number of states varies between 5 and 7, with a typical POMM
having 6 states, as illustrated in the figure. For N= 90, the total
number of states is primarily 7, and the inferred POMMs closely
resemble the structure of the ground truth model.

These results were obtained with β= 0.2. We also tested the
impact of different values of β. Across a wide range of β, the
median number of states in the inferred POMMs remained
largely insensitive to the choice of β (Fig. 2e).

This example shows that our procedure tends to infer a sim-
pler POMM than the ground truth model when N is small.
Conversely, when N is large, the procedure successfully recovers
the ground truth model. Notably, the procedure does not gener-
ate models more complex than the ground truth model.

POMMs of Bengalese finch songs in the normal condition and
after deafening
To investigate the effect of auditory input on the song syntax of
the Bengalese finch, we analyzed the songs of six adult Bengalese
finches both before and 2–4 days after deafening. This dataset
has been previously utilized for analyzing syllable repeats
(Wittenbach et al., 2015). In this study, we focus on the non-
repetitive versions of the syllable sequences.

Test of Markov models on the Bengalese finch songs
We tested whether Markov models are statistically compatible
with the observed syllable sequences using the p≥ 0.05 criterion.
The results are shown in Figure 3. For three birds, the syllable
sequences were found to be incompatible with the Markov mod-
els both before and after deafening (o10bk90, normal: p= 0, deaf-
ened: p= 0; bfa16, normal: p= 0, deafened: p= 0; o46bk78,
normal: p= 0, deafened: p= 0). For the other three birds, the
sequences were incompatible with the Markov models before
deafening, but post-deafening, the Markov models were accepted
(bfa7, normal: p= 0, deafened: p= 0.4; bfa14, normal: p= 0, deaf-
ened: p= 0.5; bfa19, normal: p= 0.03, deafened: p= 0.3). These
results suggest that deafening may reduce the Bengalese finch
song syntax from non-Markovian to Markovian for some birds,
though this effect is not universal.

Deafening results in the creation of novel transitions between
syllables, as well as new starting and ending syllables. The transi-
tion probabilities for these novel transitions tend to be low, with a
median of 0.04. However, 22% of these novel transitions exceed a
probability of 0.1, representing 18 out of 81 transitions. The
majority of these novel transitions are observed in two birds
(27 for bfa14; 21 for bfa19). Additionally, a small number (8)
of transitions disappear following deafening, with a median tran-
sition probability of 0.02 in the normal condition.

As observed in the previous studies, deafening increases
sequence variability (Okanoya and Yamaguchi, 1997; Woolley
and Rubel, 1997). The variability of transitions from a given sylla-
ble i (or the start state) is quantified using the transition entropy,
Si = −∑M

j=1 pij log2 pij, where M represents the number of
branches of the transitions, and pij is the probability of the jth
branch. IfM=1, then the transition is stereotypical, and Si equals
zero. For a given M, the entropy reaches its maximum when the
transition probabilities for all branches are equal, and this maxi-
mum entropy increases with M. The median of transition entro-
pies is significantly higher after deafening (0.95 ± 0.55) than
before (0.35 ± 0.51; Wilcoxon signed-rank one-sided test, p= 5.4
× 10−6, median difference: 0.31). Similarly, the number of branches
M is also significantly larger after deafening (4± 1.5, median ± s.d.)
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compared to before (2 ± 0.90; Wilcoxon signed-rank one-sided
test, p= 9.8 × 10−7, median difference: 1.0).

POMMs of the Bengalese finch songs
We inferred minimal POMMs from the observed syllable
sequences before and after deafening in six birds (Figs. 4, 5). In
the normal condition, the birds’ songs comprised 44 syllables, of
which 26 required 1 state, 13 required 2 states, 2 required 3 states,
and 3 required 4 states. Thus, the majority of syllables necessitated
1 or 2 states. The POMMs encompassed 76 states in total. When
considering only transition branches with probabilities greater
than 0.01, most states had up to 3 outgoing branches, with 29,
31, and 11 states having 1, 2, and 3 branches, respectively.

After deafening, there were 43 syllables (syllable g for bfa7
dropped out post-deafening). Most syllables (40) required only
1 state, with the remaining 3 requiring 2 states. In total, the
POMMs comprised 52 states. Counting only transition branches
with probabilities greater than 0.01, the states had up to 7 outgo-
ing branches (there were 2, 19, 7, 13, 6, 3, and 2 states with 1 to 7
branches, respectively).

Deafening significantly reduces state multiplicity, as evi-
denced by the decrease in the number of extra states (defined
as the difference between the number of states for the syllables
and the number of syllables) (Fig. 6a; Wilcoxon signed-rank one-

sided test, p= 0.016, median difference: −2.5). Additionally, the
mean normalized transition entropy between states, which is
the transition entropy divided by log2 M, is notably higher after
deafening in all but one bird (Fig. 6b; Wilcoxon signed-rank one-
sided test, p= 0.031, median difference: 0.21). These findings
indicate that deafening reduces context dependencies in syllable
sequences, as demonstrated by the diminished state multiplicity.
Furthermore, the transitions between states become more ran-
dom post-deafening.

In our previous work, n-gram distributions, representing the
probabilities of n-length subsequences, were used for fitting
POMMs (Jin and Kozhevnikov, 2011). In contrast, our current
method does not rely on n-gram distributions. Nonetheless,
the 3- to 7-gram distributions of the sequences generated by
the POMMs for the six birds, in both normal and deafened con-
ditions, agree with those observed in the actual syllable sequences
(Figs. 7, 8). This provides further validation of the POMMs we
have inferred here.

Neural mechanisms of the state multiplicity
Experiments that have recorded neural activity of the HVC neu-
rons projecting to downstream motor areas in the zebra finch
have demonstrated that each syllable is driven by sequential
bursts of a specific set of projection neurons (Hahnloser et al.,
2002; Long et al., 2010; Lynch et al., 2016; Picardo et al., 2016;
Egger et al., 2020; Moll et al., 2023). A projection neuron bursts
once during a specific syllable but remains inactive during others,
suggesting that different syllables are driven by distinct sets of
neurons with no overlap. These neural dynamics are effectively
modeled using synaptic chain networks of projection neurons
(Fig. 9) (Jin et al., 2007; Long et al., 2010; Miller and Jin, 2013;
Egger et al., 2020; Tupikov and Jin, 2021). Both experimental evi-
dence and computational models strongly support the idea that
syllable-chains in the HVC underlie the production of individual
syllables (Fee et al., 2004; Jin, 2009; Moll et al., 2023).

Within this framework, variable syllable transitions at
branching points can be understood as the result of
winner-take-all competitions mediated by inhibitory HVC inter-
neurons between the syllable-chains for the alternative syllables
(Chang and Jin, 2009; Jin, 2009; Wittenbach et al., 2015). The
activation of competing syllable-chains can be driven by the
activity of the preceding syllable-chain (Jin, 2009), and/or by
auditory feedback from the preceding syllables (Wittenbach et
al., 2015).

The intrinsic model provides a simple way to correlate a
POMM with the networks of projection neurons in the HVC. In
this model, each state corresponds to a syllable-chain, with sylla-
bles being activated primarily by the activities of preceding sylla-
bles. If the POMM assigns multiple states to the same syllable,
then it implies that there are multiple corresponding syllable-
chains driving that syllable. For instance, in Example 1 (Fig. 1),
where two unique observed sequences,ACD and BCE, are present,
the POMM assigns two distinct states for syllable C. Thus, the
intrinsic model requires two distinct syllable-chains for C, as
shown in Figure 9a. In this configuration, the syllable-chain for
A (chain-A) connects to one of the chain-Cs, which then connects
to chain-D. Similarly, chain-B connects to the other chain-C,
which subsequently connects to chain-E. Each syllable-chain is
thus responsible for driving a specific syllable, with different chains
for C depending on the preceding syllable (either A or B).

However, since the intrinsic model does not account for the
role of auditory feedback, it is unable to explain the reduction
in state multiplicity observed after deafening. As a result, the

Figure 3. Statistical tests of the Markov models for all birds. The distributions of Pb for the
generated sets and Pb of the observed set (red line) are shown. The p-values are displayed.
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intrinsic model fails to capture this critical aspect of the data, and
thus can be ruled out.

An alternative to the intrinsic model is the reafferent model,
in which auditory feedback from preceding syllables determines
the syllable transitions (Sakata and Brainard, 2006, 2008;

Hanuschkin et al., 2011; Wittenbach et al., 2015). In this model,
each syllable has only one syllable-chain. The presence of multi-
ple states for the same syllable in the POMMs is attributed to the
differential effects of auditory feedback from preceding syllables
on the subsequent transitions.

Figure 4. POMMs before and after deafening for three birds. The results for bfa7, bfa14, and bfa16 are shown. The p-values, the number of sequences in the observed sets, and Pb of the
observed sets are shown.

Figure 5. POMMs before and after deafening for the other three birds. The results for bfa19, ok46bk78, and o10bk90 are shown.
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This concept is illustrated with Example 1 in Figure 9b. In this
case, there is a single syllable-chain for C, which connects to both
chain-D and chain-E. However, the activation of either chain-D
or chain-E is determined by the reafferent auditory inputs
(Sakata and Brainard, 2006, 2008; Hanuschkin et al., 2011;
Wittenbach et al., 2015). Specifically, the auditory feedback
from syllable A is directed toward chain-D, while the auditory
feedback from syllable B is directed toward chain-E (Fig. 9b).
These auditory inputs bias the transitions from chain-C to either
chain-D or chain-E (Jin, 2009; Hanuschkin et al., 2011;
Wittenbach et al., 2015). With sufficiently strong auditory inputs,
the probability of transitioning from C toD approaches 1 when C
is preceded by A. Conversely, when C is preceded by B, the tran-
sition probability to E approaches 1.

Two pieces of evidence cast doubt on the reafferent model.
First, while deafening significantly reduces the state multiplicity
in the POMMs, it does not completely eliminate it. This suggests
that multiple states cannot be entirely explained by auditory feed-
back alone, implying that other factors contribute to the state
multiplicity. Second, the durations of syllables and the silent
gaps between them can be longer than the time required for audi-
tory feedback to reach the HVC. By the time transitions to the
next syllables occur, the auditory feedback from preceding sylla-
bles may have faded away, making it unlikely that it provides
sufficient context for syllable transitions. This temporal gap raises
questions about the reafferent model’s capacity to explain
context-dependent syllable transitions.

We illustrate the second point with the example in Figure 9b.
For the activity in chain-A to effectively bias the transition from
chain-C toward chain-D, the auditory feedback signal from sylla-
ble A must still be present at the time of the transition from
chain-C. This requires that the “round-trip” delay–from the activ-
ity in chain-A to the corresponding auditory feedback reaching the
HVC–be longer than the duration of chain-C. In this case, the
duration of activity propagation in chain-C should encompass
both the duration of syllable C and the preceding silent gap. If
the round-trip delay is shorter than the combined duration of syl-
lable C and the silent gap, then the auditory feedback from syllable
A will have faded before it can influence the transition from sylla-
bleC, thereby challenging the viability of auditory feedback to con-
sistently govern context-dependent transitions.

In Figure 10, we plot the distributions of the gap-syllable
durations for all syllables that require multiple states under the
normal condition for the six birds. The median values of these
durations range approximately from 80ms to 180ms. For sylla-
bles that are repeated, the auditory feedback must be available

after the completion of the syllable repetitions. Including these
repetitions, the median values of the durations extend approxi-
mately from 80ms to 600ms. These ranges establish a lower limit
on the delays of the auditory feedback required for the reaffer-
ence model to function effectively.

Experiments that perturbed auditory feedback during singing
in Bengalese finches found that sound perturbations altered
HVC activity approximately 44ms after the onset of the perturba-
tion, with no significant changes in HVC activity detectable
beyond 80ms (Sakata and Brainard, 2008). Given that the premo-
tor delay from HVC to syllable production is around 50ms
(Schmidt, 2003), the round-trip delay of auditory feedback from
a syllable is limited to approximately 130ms. Therefore, the
reafferencemechanism can be ruled out for at least 28% of syllables
with state multiplicity, as the median durations of gap-syllables for
these syllables exceed 130ms (Fig. 10). This fraction increases to
44% when syllable repetitions are included, further challenging
the viability of the reafferencemodel for explaining statemultiplic-
ity in these cases.

A model that combines elements of both the intrinsic and
reafferent models can explain the effects of deafening on statemul-
tiplicity without requiring long delays of auditory feedback
(Fig. 9c). In this hybrid model, similar to the intrinsic model,
each state in the POMM corresponds to a synaptic-chain network.
Therefore, for a syllable requiring multiple states, there are multi-
ple corresponding syllable-chains for that syllable. However,
unlike the intrinsic model, the connections between the syllable-
chains are more divergent. In this model, auditory feedback
from a syllable “tunes” the syllable transitions that follow it, rein-
forcing transitions that encode context dependence.When deafen-
ing occurs, this feedback is lost, “de-tuning” the transitions and
reducing context dependence, thus explaining the observed reduc-
tion in state multiplicity following deafening.

In Figure 9c, we illustrate this auditory-tuning model using
Example 1. Chain-A and chain-B have intrinsic connections to
both chain-Cs. The auditory feedback from chain-A biases the
transition toward the chain-C that leads to chain-D, while the
auditory feedback from chain-B biases the transition to the
chain-C that leads to chain-E. When auditory feedback is lost
due to deafening, the network reverts to relying solely on the
intrinsic connections. This allows transitions from both chain-A
and chain-B to either of the chain-Cs, resulting in less context-
specific transitions and a reduction in state multiplicity.

The auditory-tuning model suggests that the reduction of the
state multiplicity in POMMs after deafening can be explained by
deafening-induced changes in the transition probabilities between

Figure 6. Effects of deafening on the POMMs. a, The numbers of extra states for the syllables are significantly reduced. b, The transitions from the states become more random after deafening.
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the states. To investigate this possibility, we consider each state in
the POMMs under the normal condition as syllable-chains, then
modify the transition probabilities between them. These modifica-
tions are informed by the pairwise syllable transition probabilities
observed after deafening. If a novel transition from syllable x to syl-
lable y emerges after deafening (with a probability of ≥0.01), then
new transitions are established from all states associated with x to
all states associated with y. Conversely, if the transition from x to y
is eliminated after deafening, then we remove the transitions from
all states associatedwith x to all states associatedwith y.We further

refine the transition probabilities between the states. From a state
associated with x, if transitions exist to states associated with y,
then the probabilities of these transitions are scaled to ensure
the total transition probability matches the transition probability
from x to y after deafening. These modifications of the transition
probabilities could diminish the context dependencies, potentially
simplifying the POMMs to versions with reduced state multiplic-
ity, which we refer to as reduced POMMs. Importantly, these
modifications do not increase state multiplicity, as the number
of syllable-chains remains unchanged.

Figure 7. Comparisons of n-gram distributions in the normal condition. The redlines are the probabilities of n-grams in the observed sets. The n-grams are ordered in a descending order of
probabilities in the observed sets. The gray lines are the probabilities of the ordered n-grams computed from 100 sets of sequences generated from the POMMs. The number of sequences in each
generated set is matched to the number of sequences in the observed set. The red line is mostly within the range defined by the gray lines.
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The reduction process unfolds as follows: With a modified
POMM, we generate 100 sets of N sequences, where N represents
the number of sequences observed for the deafened bird. From
these sets, we select the set with the maximum probability given
the modified POMM, designating it as the “observed syllable
sequences.” Using these “observed sequences,” we infer a mini-
mal POMM, which represents the reduced POMM after modify-
ing the transitions. This process is illustrated in Figure 11a–c,
using o10bk90 as an example. The reduced POMM for this
bird matches the POMM observed after deafening in terms of
the number of states for each syllable, although the transition

probabilities differ slightly due to fluctuations introduced by
the finite N. Similarly, the reduced POMMs for all other birds
align with the POMMs post-deafening, with the exception of
o46bk78, where syllable c retains an additional state, as shown
in Figure 12. These results provide supporting evidence for the
auditory-tuning model as the neural correlate of the POMMs.

Comparison to higher-order Markov models
As discussed above, a higher-order Markov model is equivalent
to a POMM. We construct the higher-order Markov model
with the minimal order that is compatible with the observed

Figure 8. Comparisons of n-gram distributions after deafening. The same as in Figure 7 for the deafened case.
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syllable sequences, using the statistical test based on Pb.
Subsequently, we reduce this initial POMM by merging and
deleting states until we arrive at the minimal POMM, which con-
tains the fewest number of states while still remaining compatible
with the observed sequences. Higher-order Markov models have
been widely used to model birdsong sequences (Dobson and
Lemon, 1979; McLean and Roach, 2021). Therefore, it is useful

to compare the initial POMMs, which are equivalent to the
higher-order Markov models compatible with the observed
sequences, with the minimal POMMs inferred for all birds,
both before and after deafening (Figs. 4, 5).

As shown in Tables 1 and 2, the number of states in the initial
POMMs is much higher than in the minimal POMMs.
Furthermore, the state multiplicity in the initial POMMs does
not accurately capture the context dependencies in syllable
sequences. For example, consider the bird o10bk90 after deafen-
ing: the inferred POMMhas an extra state for syllable f (Fig. 5). In
contrast, the initial POMM has 5, 3, 4, and 2 extra states for syl-
lables a, e, g, and f, respectively.

The orders of the higher-order Markov models ranged from 2
to 6 under normal conditions (Table 1), but from 1 to 2 after
deafening (Table 2). This reduction in order supports our conclu-
sion that deafening reduces context dependencies in syllable
transitions. However, the higher-orderMarkovmodels are overly
complex and fail to identify which syllables are crucial for gener-
ating these context dependencies.

Discussion
POMMs are generative models well-suited for capturing the
structure of birdsong syllable sequences (Jin and Kozhevnikov,
2011). POMMs address context dependencies by associating
multiple states with the same syllable. A state transition path,
from the start state to the end state, generates a sequence of syl-
lables. A syllable with state multiplicity can transition in various
ways depending on its specific state, thereby participating in
context-dependent transitions to other syllables. If a POMM
lacks adequate state multiplicity, then it may overgeneralize,

Figure 9. Neural mechanisms for the POMM in Example 1 (Fig. 1). There are two unique sequences, ACD and BCE, in the observed set. a, The intrinsic mechanism for the multiple states of
syllable C. Two syllable-chains encode the two states for C. b, The reafference mechanism for the multiple states of syllable C. There is one syllable-chain for C, with the multiple states arising due
to the auditory feedback from preceding syllables differentially influencing the syllable transitions from C. c, The auditory-tuning model for the multiple states of syllable C. There are two
syllable-chains for C. Intrinsic connections exist from chain-A and chain-B to the two chain-Cs. Auditory feedback from syllable A biases the transition from chain-A to the upper chain-C, while
auditory feedback from syllable B biases the transition from chain-B to the lower chain-C.

Figure 10. Distributions of gap-syllable durations. Durations of syllables plus the preceding
gaps are shown for all syllables with multiple states in the POMMs for all birds. The dots
indicate the median values and the bars indicate the 5%–95% ranges of the distributions.
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producing sequences that are either never observed (type I con-
text dependence) or disproportionately increasing the likelihood
of certain sequences compared to what is observed (type II con-
text dependence). By statistically testing whether a POMM over-
generalizes relative to the observed syllable sequences, we can
identify a minimal POMM—one that has the fewest states while
still being compatible with the observed set. In an analysis of
minimal POMMs for Bengalese finch songs, under normal con-
ditions and shortly after deafening, we demonstrate that auditory
feedback plays a crucial role in generating context-dependent syl-
lable transitions in Bengalese finch songs.

To evaluate the fit of a POMM, we first construct the distribu-
tion of augmented sequence completeness, Pb, based on
sequences sampled from the candidate POMM. This distribution
is then used to calculate the p-value of the observed set’s Pb, as
computed by the POMM. We reject the POMM if p < 0.05.
Lowering the p-value threshold allows for the acceptance of sim-
pler POMMs with fewer extra states.

Our method is conservative. When the number of observed
sequences N is small, the inferred POMM may underestimate
the true number of states due to the limited representation of
context dependencies in the observed sequences. A practical
approach to assess whether N is sufficiently large is to examine
if the sequence completeness Pc, as calculated using POMM,
approaches 1 for the observed sequences. The difference, 1−
Pc, can serve as a rough estimate of the total probability of miss-
ing unique sequences.

Two common methods for model selection are the Akaike
Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) (Zucchini and MacDonald, 2009). For a
POMM, the AIC is defined as 2k− 2L, where k is the number
of transition probabilities and L is the log-likelihood of the
observed sequences given the POMM. The BIC is defined as
k logN − 2L, where N is the number of observed sequences.
Among candidate POMMs, the model with the lowest AIC or
BIC is selected to balance model fit and complexity. In tests using

the simple example shown in Figure 2, we find that both AIC and
BIC tend to underestimate state multiplicity compared to our
method. AIC and BIC require comparison between models and
often necessitate the enumeration of possible models to identify
the minimal one. In contrast, our method can directly evaluate a
single model, allowing the initial acceptance of a complex model,
which can then be simplified by merging or deleting states.

Hidden Markov models (HMMs) are commonly used to
model sequences (Rabiner, 1989), including Bengalese finch
songs (Katahira et al., 2011). Like POMMs, HMMs involve prob-
abilistic state transitions. However, unlike a POMM, a state in an
HMM can emit any syllable, with the emission probabilities
needing to be fitted based on the observed sequences.

While the flexibility of emission probabilities in HMMs could,
in principle, reduce the number of required states for certain syl-
lable sequences, this is not always the case. For example, in a song
consisting of a single sequence, ABC, such as in the zebra finch
song, the HMM would still require five states (the start and
end states, along with three states emitting syllables A, B, and
C, respectively) to avoid overgeneralization. Thus, the number
of states in the HMM remains the same as in the POMM.
However, the HMM includes more free parameters because the
emission probabilities must also be fitted. As a result, for bird-
song, HMMs offer no clear advantage over POMMs and may
be unnecessarily more complex due to the increased number of
parameters required.

Another drawback of HMMs is that their states are less inter-
pretable in terms of neural activity in the HVC. During singing,
distinct sets of neurons are responsible for producing each sylla-
ble (Fee et al., 2004), and the same set of neurons does not prob-
abilistically drive the production of multiple syllables. This makes
the emission probabilities in HMMs difficult to interpret within
the context of song production.

There are many models designed to efficiently capture statis-
tical regularities in sequences. Sparse Markov models (Jääskinen
et al., 2014) and variable length Markov chains (VLMCs)

Figure 11. Reduction of a POMM after modifications of the transition probabilities. a, The POMM of o10bk90 in the normal condition. b, The POMM after modifications of the transitions
probabilities using the syllable transition probabilities after deafening. c, Reduced POMM inferred from the N= 62 “observed sequences” generated from modified POMM. d, The POMM after
deafening shown for comparison with the reduced POMM.
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(Bühlmann and Wyner, 1999) focus on reducing higher-order
Markov models into simpler forms that still retain the critical
context dependencies within sequences. In this regard, both

models share similarities with POMMs. However, unlike sparse
Markov models and VLMCs, POMMs provide a biologically
interpretable framework for birdsong. This interpretability is a
key strength of POMMs in the study of birdsong syntax, as
they allow for connections to biological structures such as

Table 1. Comparison of the inferred POMMs with the higher-order Markov models,
which are equivalent to the initial POMMs before state merging and deletion, for
all six birds under normal conditions

Bird Inferred POMM Higher-order Markov model Order

bfa7 17 42 5
bfa14 13 35 3
bfa16 13 17 2
bfa19 12 16 4
o46bk78 17 40 6
o10bk90 10 17 3

The number of states and the order of the higher-order Markov models are listed.

Table 2. Same comparison as in Table 1 but for the condition after deafening

Bird Inferred POMM Higher-order Markov model Order

bfa7 9 9 1
bfa14 11 11 1
bfa16 11 21 2
bfa19 9 9 1
o46bk78 9 17 2
o10bk90 9 22 2

Figure 12. Comparisons of the reduced POMMs and the POMMs after deafening. The results for bfa7, bfa14, bfa16, bfa19, and o46bk78 are shown. The POMMs after deafening are the same as
those presented in Figures 4 and 5, but the states have been laid out differently to facilitate easy comparison with the reduced POMMs.
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syllable-chains in the HVC. POMMs may not be well suited for
other types of animal vocal sequences, such as mouse ultrasonic
vocalizations (Wu et al., 2024), where such biological interpreta-
tions may not apply.

Under normal conditions, the songs of Bengalese finches in
our study exhibit context-dependent syllable transitions. The
POMMs for these songs show varying levels of state multiplicity,
as shown in Figures 4 and 5, highlighting significant individual
differences. Investigating the origins of these differences could
be insightful, particularly in understanding the role of learning
in shaping the formation of context dependencies in the songs.

Deafening significantly reduces state multiplicity, which can
be explained by a model where the randomness of syllable tran-
sitions, driven by intrinsic connections between syllable chains, is
mitigated by auditory feedback (Figs. 9, 11, 12). In this auditory-
tuning model, auditory feedback modulates transitions between
syllable chains, particularly those following context-providing
syllables. This feedback refines transition probabilities and
enhances context dependencies. This mechanism aligns with
observations that disruptions to auditory feedback in Bengalese
finch songs increase randomness in syllable sequences and intro-
duce novel transitions (Sakata and Brainard, 2006). Consistent
with the auditory-tuning model, adjusting the POMMs under
normal conditions to reflect post-deafening syllable transition
probabilities significantly simplifies the POMMs, making them
closely resemble those observed after deafening (Figs. 11, 12).

The reafferent model is an alternative in which state multiplic-
ity arises entirely from auditory feedback (Fig. 9b). However,
based on syllable durations and the time scale required for audi-
tory feedback signals to be detectable in the HVC (Sakata and
Brainard, 2006), we have argued that the reafferent model is
not feasible. Further experiments employing a variety of tech-
niques could help clarify whether the auditory feedback time
scale is indeed too short to account for the time scales needed
to explain context-dependent syllable transitions in Bengalese
finch songs. Additionally, neural signals other than auditory
feedback may also contribute to context dependencies.

Experiments imaging calcium dynamics in the HVC of sing-
ing canaries have shown that different sets of HVC neurons can
be active for the same syllable, depending on the context-
dependent syllable transitions (Cohen et al., 2020). This finding
supports the neural interpretation of state multiplicity in
POMMs. Applying similar techniques to the Bengalese finch
should allow for a quantitative test of POMMs. For an individual
bird, the POMM inferred from its songs should provide a lower
limit on the number of distinct sets of HVC neurons driving each
syllable. These predicted numbers can then be compared to
experimental observations. Such an experiment would directly
test the validity of POMMs for Bengalese finch songs.

Previous studies on the effects of deafening in Bengalese
finches have highlighted the rapid loss of sequence stereotypy,
emphasizing the necessity of online auditory feedback for main-
taining stereotyped syllable sequences (Okanoya and Yamaguchi,
1997;Woolley and Rubel, 1997). Our findings are consistent with
these observations, as we also observe increased randomness in
syllable sequences following deafening. On average, across the
birds studied, there is a marked increase in transition entropy
at syllable transition branching points after deafening (Fig. 6b).
This increase is mainly due to the previously dominant transi-
tions at these branching points becoming more evenly distribu-
ted, resulting in branches with more similar transition
probabilities. Notably, similar outcomes have been reported in
studies involving perturbations of auditory feedback (Sakata

and Brainard, 2006), cooling of the HVC (Zhang et al., 2017),
and enhancing inhibition within the HVC (Isola et al., 2020) in
Bengalese finches. Investigating the potential for a unified neural
mechanism underlying these diverse manipulations is an intrigu-
ing direction for future research.

In conclusion, we have developed a method for inferring min-
imal POMMs from observed sequences. When applied to the syl-
lable sequences of Bengalese finch songs, both before and after
deafening, our results indicate that the auditory system plays a
crucial role in establishing context dependencies in syllable tran-
sitions. This method has broad applicability and could be useful
for analyzing behavioral sequences in other animals as well.
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