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Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent
neural networks
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Synfire chains are thought to underlie precisely timed sequences of spikes observed in various brain regions
and across species. How they are formed is not understood. Here we analyze self-organization of synfire chains
through the spike-timing dependent plasticity (STDP) of the synapses, axon remodeling, and potentiation decay
of synaptic weights in networks of neurons driven by noisy external inputs and subject to dominant feedback
inhibition. Potentiation decay is the gradual, activity-independent reduction of synaptic weights over time. We
show that potentiation decay enables a dynamic and statistically stable network connectivity when neurons spike
spontaneously. Periodic stimulation of a subset of neurons leads to formation of synfire chains through a random
recruitment process, which terminates when the chain connects to itself and forms a loop. We demonstrate that
chain length distributions depend on the potentiation decay. Fast potentiation decay leads to long chains with
wide distributions, while slow potentiation decay leads to short chains with narrow distributions. We suggest
that the potentiation decay, which corresponds to the decay of early long-term potentiation of synapses, is an
important synaptic plasticity rule in regulating formation of neural circuity through STDP.
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I. INTRODUCTION

Coevolution of the dynamics and topology of networks is
widely observed in diverse systems from cellular biology to
social networks [1–3]. In the brain, the spiking dynamics of
neurons depends on how they are connected. On the other
hand, the connectivity can be modified by the spiking activity.
The connections (synapses) between neurons in many brain
areas are modified according to the spike-timing-dependent
plasticity (STDP) rule [4–7]. A most common STDP rule for
excitatory neurons is as follows [7]: the connection strength
(synaptic weight) from neurons A to B is strengthened if A
spikes before B [long-term potentiation (LTP)], and weakened
if A spikes after B [long-term depression (LTD)]. The amount
of modification decreases with the time difference between
the spikes of A and B. The connection between two neurons
is lost if the synaptic weight is reduced below a threshold;
conversely, it can be established through consistent parings of
the spikes of the neurons. Studies that use STDP in spiking
neural networks have shown a number of emergent properties
[8–13]. In this paper, we show that synfire chain connectivity
[14,15], in which subsequent groups of neurons are connected
into a feedforward network that supports sequential spiking
of the neurons, emerges through coevolution of the spiking
activity and the connectivity across many presentations of a
training stimulus to a subset of neurons (training neurons).

Sequential spiking of neurons is observed in a number
of brain areas [16–18]. Some of the strongest experimental
evidence for synfire chains producing spike sequences is from
zebra finch premotor nucleus HVC (proper name) [18–20].
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Projection neurons in HVC spike sequentially at precise times
relative to the learned song [18]. Consistent with the synfire
chain dynamics, cooling HVC uniformly slows down the song
[19], and the subthreshold membrane potentials of neurons
rapidly depolarize 5–10 ms before they spike [20]. It is
well established that synfire chains robustly produce spike
sequences [14,15,21,22]. However, how neurons are wired into
synfire chains is not well understood.

An intriguing possibility is that synfire chains self-organize
through activity-driven synaptic plasticity. Earlier studies
using STDP or similar Hebbian rules resulted in short chains
with a few groups [8,23,24]. The most likely reason is
that these rules are prone to producing unstable growth
of connections [12,25,26]. Two recent studies introduced
additional homeostatic synaptic rules to limit such instability,
and showed that long synfire chains can form [25,27]. The
key idea behind both studies is to restrict the connectivity of
the network after a certain amount of growth has occurred.
Fiete et al. achieved this by limiting the total synaptic weight
in and out of every neuron [27]. However, a study using
large scale simulations and mean-field analysis suggested that
the regulation of the total synaptic weights does not prevent
unstable network growth [26]. In [25] (Jun-Jin model), we took
a different approach, and imposed an axon remodeling rule
that limits the number Nss of strong connections, defined as
those with synaptic weights above a threshold, that one neuron
can maintain. Reaching the limit leads to pruning of all weak
connections from the neuron. There are two additional features
of the Jun-Jin model. First, the model includes a gradual,
activity-independent decay of synaptic weights, which we call
potentiation decay. Second, an activation threshold switches
synapses on or off depending on the magnitude of the synaptic
weights. This rule allows the active connections between
neurons to form or disappear as the synaptic weights are
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modified. Simulations of 1000 leaky integrate-and-fire neurons
showed that synfire chains emerge from initially random active
connections when 6 to 40 training neurons are intermittently
activated by external inputs for many trials. The number of
neurons in each group roughly equals Nss (set to 10 in the
simulations), and is not affected by the number of training
neurons except for the first 2–3 groups [25].

In this paper, we perform an in-depth analysis of the Jun-Jin
model. We address unresolved fundamental questions such as
what determines the lengths of the emergent chains and how
the length distributions are influenced by the total number
of the neurons (network size). We establish that, when the
network is randomly active, the synaptic plasticity rules in
this model allow the network connectivity to fluctuate, but the
synaptic weights remain in a statistically stationary distribu-
tion. This ensures that the chain formation does not depend
on specific initial network connectivity. We demonstrate that
in between training trials, sequential spikes can spontaneously
emerge in the forming chain. This noise-induced reactivation
of the chain creates connections from neurons outside of
the chain to those in the chain, and plays a critical role
in determining the length distributions of the final chains.
Most notably, there is an upper limit for the mean chain
length as the network size becomes large. We show that slow
potentiation decay leads to short chains with narrow length
distributions, while fast potentiation decay leads to long chains
with wide length distributions. We compare the results of
network simulations to a lottery-type stochastic process in
which neurons are selected iteratively to enter a chain, and
the chain stops growing when a loop is formed, either by
selecting neurons already in the chain or by selecting neurons
connected to the chain. The distribution of chain lengths from
the network simulations fits well with distributions generated
by the lottery process. The analysis of this simple growth
model shows that the rate of potentiation decay influences the
chain length distributions by controlling the emergence of the
connections to the growing chain. These connections also lead
to a finite limit for the mean chain length as the network size
increases.

II. METHODS

A. Simulations

We simulate synfire chain formation in recurrent networks
of excitatory neurons. We model each neuron using a leaky
integrate-and-fire (LIF) model. The neurons interact via pulse
conductances, and they receive dominant feedback inhibition.
They are also driven by upstream regions that we do not
simulate, but instead model as independent, fluctuating ex-
ternal inputs. Synaptic weights between neurons are modified
according to an STDP rule. The details of modeling can be
found in the Appendix.

Our model choices were dictated by necessity to simulate
the network dynamics quickly [28–30]. A large number of
training trials (104 to 105) are required for synfire chain
formation in our model, and many training sessions are
needed to construct the chain length distributions for a range
of model parameters. Therefore, it was necessary that our
simulation algorithm be efficient. We modified a fast, event-
driven algorithm [28] that had been developed to generate

activity of pulse-coupled neurons that are targeted by a
fluctuating external input. When the external input is modeled
by Gaussian white noise (GWN), one can numerically solve
the Fokker-Planck equation [31], store particular solutions
in “lookup tables,” and sample them during the network
simulation to generate spike times. The steps of the algorithm
are detailed in the Appendix. The computational advantage
of using pulse-coupled neurons is that the response of the
membrane potential is instantaneous and can be calculated
exactly. The time evolution of the membrane potential between
spikes is calculated from the lookup tables.

By our measurements, this algorithm is up to 150 times
faster than simulating with the fourth-order Runge-Kutta
method [32]. Instead of scaling with the number of time
steps, the simulation time scales with the number of spikes,
which results in increased simulation speed. Two differences
distinguish our simulation algorithm from that reported in
[28]. First, we simulate conductance-based neurons instead
of current-based neurons. Second, instead of a spike latency,
we impose a time resolution on the arrival times of spikes, as
suggested in [33]. Algorithmically, imposing a time resolution
on the spike arrival times means that, instead of the neuron
with the single earliest predicted time emitting a spike, any
neurons that spike within an interval Tres = 3 ms of the
earliest predicted spike time effectively spike together. The
arrival time of the spikes at synapses is picked to be at the
end of the resolution interval. This method has the same
effect as a random latency, allowing neurons to cooperate to
excite common targets, but it requires no additional queuing
of events, which can be computationally intensive and slow
simulation considerably [34].

The population of neurons we simulate make excitatory
connections to each other. However, we assume a population of
interneurons targets the excitatory population, and these neu-
rons reliably spike immediately when the excitatory neurons
spike. All of the neurons in the excitatory population are inhib-
ited at the end of the resolution interval. Near-global inhibition
is observed in neocortical circuits [35] and in the songbird
premotor area HVC [36]. We do not simulate interneuron
activity in order to conserve computational resources. The
inhibition is stronger when more neurons spike within the
spike resolution window, but we put a constraint on it based
on the assumption that there is a finite size to the interneuron
population targeting the simulated neurons [37]. Details are
left to the Appendix.

B. Synaptic weight dynamics

The synaptic weight between each pair of simulated
neurons is modified based on the STDP rule (details are
in the Appendix). Three additional synaptic plasticity rules
are implemented to deter unchecked synaptic strengthening
that STDP alone can lead to [12,25,26], and to ensure stable
synaptic weight distribution when the network is in the state
of spontaneous activity with no training stimulations.

Activation threshold. Silent synapses are those with no
postsynaptic AMPA receptors [38]. At physiological con-
ditions, these synapses do not produce responses in the
postsynaptic neuron, hence “silent.” LTP can activate silent
synapses to become functional synapses [38]; conversely,
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LTD can silence active synapses [39,40]. Abundant especially
during the development, silent synapses allow the possibility
of sculpting a wide variety of neural circuits through neural
activity.

We model silencing and activation of synapses by thresh-
olding the synaptic weights. If synaptic weight from neuron
i onto neuron j , Gi,j , grows larger than �A, then it is active
and evokes a response from its target; otherwise, it is silent
and behaves as if it has zero weight. For our simulations, we
pick �A = 0.02. Regardless of whether a synapse is silent or
active, it obeys the STDP rule. Our results do not depend on
synaptic depression acting on silent synapses.

Active synaptic connectivity in vivo is sparse with a single
neuron connecting to less than 10% of its neighbors [41]. The
activation threshold directly avoids densely connected network
states by deactivating all sufficiently weak connections. A
synapse between any pair of neurons can be activated, so
activity can drive the development of any possible synaptic
connectivity. In other words, there is no a priori restriction on
how neurons can be connected after training. Parameters are
selected such that the connectivity remains within the sparse-
ness bounds observed experimentally. A common modeling
approach for avoiding dense connectivity is to specify a sparse
connectivity between neurons and allow only synaptic weights
of these connections to change [11,12]. In this strategy no
new connections can form, and the effects of training on the
connectivity is much more restricted than in our model.

Potentiation decay. In addition to the activation threshold,
a potentiation decay is applied to the weights of all synapses,
amounting to a slow memory leak within the system. The
decay is activity independent and is implemented as a rescaling
of all synaptic weights Gi,j → βGi,j , where 0 < β < 1,
as in previous phenomenological synaptic growth models
[42–44]. Long-term potentiation of synapses usually decays
to baseline within 3 h, which is called the early LTP (E-LTP)
[45]. We assume that the reduction of the synaptic weight
during the trial time is insignificant given the typical 3 h
time scale of potentiation decay; therefore, weight rescaling
is applied between consecutive 2 s training trials, but not
during the trial interval. Implementing the rescaling during
trials is computationally intensive and produces no observable
differences.

In this simplified model of potentiation decay, all synaptic
weights are subjected to the weight rescaling between each
trial, including weights of silent synapses. The decay of
the silent synapses is important for our model. Consider
what happens to synaptic weights that become deactivated
due to either potentiation decay or synaptic depression. If
synaptic depression were the only mechanism that modifies
the weights of silent synapses, then a deactivated weight may
remain close to the activation threshold. This would lead to
an accumulation of weights near the threshold that require a
small increase in order to become active. On the other hand,
if deactivated synapses have their weights immediately set
to zero after deactivation, then a synapse that is consistently
active, but does not evoke a spike from its target because of
noisy fluctuations over a few consecutive training trials, is
immediately destroyed. Choosing to implement a decay of
the silent synaptic weights is proposed as a balanced solution
to these two scenarios. The decay of silent synapses can be

related to gradual elimination of spines observed on dendrites
[46]. Its biological mechanism is most likely different from the
decay of E-LTP. We apply the same decay rule for both silent
and active synapses for the sake of simplicity. The details
of how silent synapses decay do not matter. The functional
role of the potentiation decay in our growth simulations is to
regulate runaway synaptic growth. We will demonstrate that,
in combination, the activation threshold and the potentiation
decay have a stabilizing effect on the growth of the network.

Axon remodeling. Synaptic weights are clipped if they
are strengthened above a threshold Gmax (see the Appendix).
However, this does not limit the number of strong synapses that
approach the strongest allowed weight. Another mechanism,
axon remodeling, regulates the number of strong synapses a
neuron can maintain with limited resources available. Limiting
the number of strong synapses stabilizes an emerging synaptic
topology of strong synapses. If axon remodeling were not
imposed on each neuron’s axonal tree, a well-connected
neuron would continue to accrue targets. Neurons in vivo are
observed sending out many axons during development, then
retracting most and maintaining only the strongest [47]. A
small number of strong synapses in a network have also been
measured in experiments [48,49]. A slower potentiation decay
is also applied to the strongest synapses, resulting in further
stabilization.

Axon remodeling is implemented with the following rules,
which are nearly identical to those in [25].

(1) A second threshold, �S , in addition to the active
threshold, is introduced within the range of allowed synaptic
strengths. Weights greater than this value characterize a strong
active synapse, which we deem a supersynapse. Supersynapses
elicit spikes reliably from a target despite the noisy fluctuations
of the membrane potential. The supersynapse threshold is
greater than the active threshold: �S > �A.

(2) A limit, Nss , is imposed on the number of neurons that
a presynaptic neuron contacts along supersynapses. This is the
maximum number of strong connections a neuron can maintain
with its limited resources. When this number of supersynapses
is attained, the neuron is said to be “saturated.”

(3) Once a neuron is saturated, the STDP rule is only applied
to its supersynapses. After saturation all synaptic weights
continue to decay. The potentiation decay reduces the weights
of nonsupersynapses, and as a result they will eventually
approach zero with no opportunity to be potentiated unless
the neuron desaturates.

(4) Supersynapses are reinforced by repeated LTP; without
regular reinforcement, potentiation decay can cause desat-
uration and all connections will undergo STDP again. If
desaturation occurs frequently, no stable synaptic structure
emerges. High membrane potential variability reduces the
frequency of LTP at a supersynapse because higher noise
reduces reliability of a supersynapse to produce a spike from
its target. In order to ensure LTP occurs frequently enough to
overcome the potentiation decay, in all simulations, we apply
a slower potentiation decay βss = 1.1β to supersynapses of a
saturated neuron. This corresponds to the slower decay of the
late phase LTP (L-LTP) compared to E-LTP [45].

Axon remodeling and the synaptic cap are nonessential to
stability of the weight distribution of a network before training;
they are only necessary when the network is presented with a
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stimulus. In the next section, the roles of of axon remodeling
will be further articulated where the training regimen is
described.

C. Network training

Network training is broken into a series of identical trials.
Supersynapses can emerge within a network as it is presented
repeatedly with a training stimulus. We model this stimulus
with a short, strong excitatory current onto a small subset
of training neurons. The training excitation originates in
an upstream brain area, possibly one processing sensory
stimuli. Training continues until the number of supersynapses
contained in the network stabilizes.

A trial commences with the presentation of the training
signal to the training neurons. The signal is modeled by a strong
external drive biasing the training neurons to spike within
several milliseconds of the beginning of the trial. After 8 ms the
driving current onto the training neurons returns to its baseline
value. The spontaneous activity and synaptic weight dynamics
are simulated for 1 s after the training signal is withdrawn.
The trial ends after this specified trial time and an intertrial
interval commences, which we do not simulate. During this
period, which is assumed much longer than 1 s, synaptic
weights are reduced by the potentiation decay factor β and
the membrane potentials are randomized. Training is repeated
until the number of supersynapses reaches a stable value for
2500 trials; this may take as few as 5000 trials up to 100 000
trials depending on the size of the network and learning scale
factor (see the Appendix). We will show in the next section
that the training neurons form the seed for development of a
synaptic chain of neurons connected by supersynapses.

III. RESULTS

Synfire chain growth in response to training is governed
by stochastic selection of postsynaptic targets until a loop
forms and the growth stops. Repeated stimulations of the
training neurons change the synaptic weight distribution and
produce strong, stable synaptic chain connectivity. Chain
growth emanates from the training neurons. Neurons that
spontaneously spike shortly after the training neurons may
be targeted by the training neurons due to the STDP rule.
Since the training neurons spike synchronously, they make
convergent connections to the same set of neurons. Subsequent
training strengthens these connections until the synapses
become supersynapses. Once supersynapses develop, reliable
spikes can be evoked in these targets on nearly every trial.
When this is the case, we say that the targets have been
recruited. The cooperation via the convergent synapses is
important for the targets to overcome membrane noise. Axon
remodeling restricts the number Nss of supersynapses that one
neuron can maintain. Consequently, the number of recruited
neurons is close to Nss regardless of the number of the
training neurons, although some fluctuations exist due to
the noise in the recruiting process. The recruitment process
continues as the second group accrues their own targets via
the same cooperative process. New groups are recruited until
previously recruited neurons are recruited again, forming a
closed loop. This stochastic, iterative process yields stable
synfire topologies that produce long, stereotypical sequences
of spikes [25]. The chains consist of an introductory sequence
that begins with the training neurons, which feeds a loop of
strong synaptic connectivity, examples of which are displayed
in Fig. 1. The network structure is clearly reflected in raster

(a)

(b )

(c)

FIG. 1. Samples of asymptotic configurations of synapses in a 4000 neuron network generate long, stereotypical sequences of spikes. The
chains above have 25 (left) and 40 (right) synfire groups. The time between firing of adjacent groups is ∼3−4 ms. The number Nss of super
synapses one neuron can maintain is set to 5. The number of training neurons is 5. (a) Blowup depicts regular synfire connectivity between
groups. The regular structure observed is a result of neurons cooperating to excite targets. A neuron most effectively excites a target when the
target is shared with a neuron in its group, so convergent synapses are favored for development into supersynapses. A group accumulates shared
targets until the maximum allowed number of supersynapses is reached. There are five neurons per synfire group in this network because the
maximum number of supersynapses allowed by axon remodeling is five per neuron. (b) The reconnection point is splayed across several groups.
The connections that form first are to the group nearest the top of the chain. The downstream connections follow due to elevated probability of
reignition at the initial connection point. The splayed connectivity allows spontaneous activity to restart when the excitation reaches this point
because neurons across several synfire groups spike and sequential activity is most stable when a full synfire group fires. However, the synapses
at the reconnection point potentiated often enough to remain stable. (c) Defects sometimes appear as the chain emerges. Small defects like the
one depicted can remain stable. Severe defects are not stable and never appear due to lack of a clear sequence that is consistently reinforced by
STDP.
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FIG. 2. Raster plot of the population activity after a synfire chain
has self-organized. The neurons are labeled according to their time
of first spike. Some neurons in the chain do not spike during the
first iteration around the loop due to fluctuations of the membrane
potential, but they do spike during subsequent iterations. These
neurons have the highest valued labels across the top of the plot.

plots of the activity of the population during a typical trial after
the chain is fully formed, as shown in Fig. 2.

The length of the chain formed by this process varies from
trial to trial, and depends on the values of synaptic plasticity
parameters and the size of the network (Fig. 3). We find that
the potentiation decay β is the crucial model parameter that
predicts the mean and variance of the distribution. We present a
simple, analytically solvable, “lottery” chain-growth model to
explain how the potentiation decay controls the characteristics
of the length distributions. Our lottery model predicts that the
mean chain length approaches a finite value as network size is
increased. This simple model reproduces what is observed in
the full, simulated model. The mean chain length in the lottery
model is controlled by a small parameter quantifying the
likelihood that a neuron that is recruited by the chain already
targets the chain. We observe these preferential connections
from unrecruited neurons onto recruited neurons in the full
simulations, and we describe why these connections appear.
What these results show is that training alters not only the
network topology among neurons recruited to the chain, but
also the connections from all other neurons to the neurons
in a chain. This “global” response of the connectivity to an
excitation targeting only a small subset of the population
is indicative of a synergistic relationship between the spike
activity on the network and the underlying topology.

A. Dynamical ground state

Chain growth is initiated by stimulating the training
neurons. Before training, the initial values of synaptic weights
are drawn from a particular distribution, which we refer to
as a dynamic ground state. Around 2%–10% of the synapses
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FIG. 3. (a) Two simulated synfire chain length distributions for
two different potentiation decay parameters. As the potentiation decay
slowed, the resulting distribution of lengths narrows. Sample size: 100
networks. N = 1000 neurons. (b) The mean synfire chain length as
a function of network size. The mean length saturates as the network
size increases. Sample size of each data point: 100 networks. β =
0.985. The error bars denote the standard error of the mean.

are active. This connection probability of the active synapses
is a generally accepted range for cortical networks [41].
Spontaneous activity occurs in the network due to the noise
and the active connections. The rules that govern synaptic
dynamics (STDP, active threshold, potentiation decay, etc.)
yield a distribution of synaptic weights that is statistically
stationary as the population is spontaneously spiking. The
dynamic ground state is stationary due to the homeostatic effect
of the potentiation decay and the activation threshold. If not for
the interplay between these two plasticity rules, supersynapses
would spontaneously emerge due to positive feedback across
the strongest synapses [12]. Instead, a unimodal distribution
of synaptic weights emerges. In Fig. 4 we compare a synaptic
weight distribution when potentiation decay is acting on the
synaptic weights [Fig. 4(a)] to when it is not [Fig. 4(b)]. A
particular synaptic weight in a dynamic ground state takes
a random walk with steps generated by the STDP rules
and the potentiation decay. Stability relies on potentiation
decay that prevents synaptic weights from diffusing to large
values. Synapses driven below the activation threshold by the
potentiation decay and LTD can be reactivated by LTP. In a
dynamic ground state, any neuron is connected to ∼2%−10%
of the other neurons via active synapses at any given moment.
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FIG. 4. Potentiation decay suppresses runaway synaptic growth
resulting from positive feedback along active synapses. Two networks
are compared by setting the activation threshold to 0.015 (“active”)
and ∞ (“silent”), respectively. The silent network effectively has all
synaptic conductance set to zero. In (a), a potentiation decay is applied
to all synapses after each 1 s interval of simulated time. In (b), there is
no potentiation decay. In both scenarios there is no positive feedback
in the silent networks, so these distributions (light gray) are stable in
both (a) and (b). However, in the networks with active synapses, only
the distribution in the network with potentiation decay (a) remains
stable indefinitely. In the network without potentiation decay (b),
synapses grow large resulting in runaway activity.

The distribution of synaptic weights in the dynamic ground
state is obtained by letting the weights evolve while simulating
spontaneous activity without a training signal over a sufficent
number of trials. These “initialization” trials are identical to the
training trials except that the training neurons are not subjected
to the focused strong excitation. Neurons are driven with noisy
excitation over 2 s trials resulting in spontaneous activity while
the synaptic weights evolve according to the plasticity rules.
After several hundred initialization trials, the stationary weight
distribution emerges. We identify this network state when the
number of active synapses in the network reaches a stable
value. A dynamic ground state does not emerge for all sets of
the synaptic plasticity parameters (details in the Appendix).
For example, if the maximum possible potentiation of the
synaptic weight is small compared to the activation threshold
and the potentiation decay is fast, the stationary state may
contain only a few, short-lived active synapses because newly
activated synapses are driven below the threshold before they

can be further strengthened. The opposite situation is also
possible when the potentiation decay is too slow to admit a
stable weight distribution in which 2%–10% of the synapses
are activated. Finding the full parameter space for a stable
dynamic ground state requires a parameter search. However,
a working combination can be found by setting the maximum
potentiation slightly larger than the activation threshold, and
the potentiation decay rate fast enough to deactivate a newly
activated synapse within tens of trials. These parameters
produce a stationary distribution in which the number of
active synapses is likely smaller than 2%. The number of the
active synapses can be increased by decreasing the maximum
potentiation strength and the potentiation decay rate from this
point.

B. Emergence of synfire chain

When a training stimulus is presented repeatedly to a
network in the dynamic ground state, the stationary distribution
of synaptic strengths is disturbed. This response of the network
to the training stimulus drives emergence of the synfire chain
within the initially disordered ground-state network. During
the training, the neurons recruited into the emerging chain
have different synaptic strength distributions compared to
those unrecruited (or “pool”) neurons. To illustrate why this is
so, consider specifically the training neurons as they contact
neurons in the pool. Because the network is initialized in the
dynamic ground state before training, all neurons, including
the training neurons, have the same initial distribution of
synaptic strengths onto their targets. However, when training
begins, the training neurons spike at the beginning of each
trial with high probability, and the synaptic weights from the
training neurons onto the pool neurons are more likely to
increase because the training neurons spike reliably every
trial. The weights approach a new equilibrium that has higher
average weight than the dynamic ground state. This is shown in
Fig. 5. The positive shift of the average strength of a synapse
targeting the pool is a result of spiking with near-certainty
every trial.

As the distribution of weights of synapses from training
neurons onto the pool shifts positive, the potentiation decay
is not sufficient to deter rapid growth from positive feedback.
Consequently, supersynapses emerge from the training neu-
rons onto pool neurons. These synapses tend to be convergent
since the convergence allows the training neurons to evoke
reliably a spike from a shared target. Furthermore, the training
neurons that do not share the target are likely to develop
connections onto a shared target since the shared target
spikes frequently after the training neurons, which spike
synchronously at the start of each trial. As the training
progresses, the training neurons accrue supersynapses onto
shared targets, with their strengths capped at Gmax. When
the number of supersynapses from each training neuron hits
the limit Nss imposed by the axon remodeling rule, all weak
synapses are pruned and decay away due to the potentiation
decay. Training neurons maintain only Nss supersynapses.
Consequently, no more targets are recruited, and the second
group is formed. The number of recruited neurons is close
to Nss because of the convergence. Because of the strong,
convergent connections from the training neurons, the second
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FIG. 5. Histogram of synaptic weights in network with silent
synapses. A group of training neurons spikes at the beginning of
every trial. The distribution of weights onto the nontraining neuron
(pool neurons) stabilizes with a higher mean weight. The synapses in
these simulated networks are silenced (i.e., �A > Gmax) in order to
emphasize that the net strengthening is independent of interactions
between individual neurons. When interactions are allowed, the
strongest synapses may overcome the potentiation decay leading to
development of strong synapses within the network.

group spikes reliably in each trial. They accrue their own
targets in the pool following the same process as the training
neurons. The result is a positive shift of the distribution of
synaptic weights away from the stationary distribution of the
dynamic ground state. Like the training neurons, the second
group of neurons can eventually saturate by accruing shared
targets within the pool until axon remodeling prevents further
growth. The targets of the second group form a third group
whose distribution of synaptic weights responds similarly.
Iterations of this recruitment process result in emergence of a
synfire chain within the network.

As the chain network develops, spikes propagate along the
chain when it is initiated by the training signal, and the ordering
and timing of the spikes is almost the same across trials. A
sequence may also be ignited by spontaneous activity, which
we call reignition. This can be observed directly in raster
plots of spontaneous activity in networks with developing
chains. An example is shown in Fig. 6(a). Spontaneous activity
can initiate spike propagation from a random point in the
chain. To quantify this observation, we simulated spontaneous
activity of a network in which a subset of neurons are wired
into a synfire chain and all other connections are randomly
set (synaptic plasticity was suppressed). We measured the
spontaneous firing rates of all neurons. As shown in Fig. 6(b),
the downstream neurons in the chain have higher firing rates
than the upstream neurons. This is because spikes reliably
propagate down the chain wherever the reignition starts. The
linear increase of the firing rates down the chain suggests
that the probability of starting reignition is uniform across the
chain.

Reignition has direct impact on the distribution of synaptic
weights of the network. After multiple reignitions, the number

of neurons targeting the chain increases. This is shown
in Fig. 6(c). Pool neurons that are spontaneously active
immediately before chain reignition have increased likelihood
of targeting the chain. Once these synapses from pool to chain
are activated there is a decreased likelihood of LTD events on
these synapses, since the strong connectivity within the chain
makes it more likely for activity to remain on the chain after
chain neurons are spontaneously active. Hence pool neurons
tend to connect to a developing synfire chain. This positive shift
of the weights from pool neurons onto neurons in the chain
plays a role in the closure of the chain. Once these preferential
connections from the pool to the chain become numerous,
it becomes likely that the pool neurons newly recruited into
the chain are already connected to the chain, forming a
loop that stops the chain growth. In Fig. 6(c) it is clear
that for faster potentiation decay, the total synaptic strength
targeting the chain is smaller, implying that the stronger decay
is more effective at reducing the strengths of pool neurons
targeting the chain. Chains recruit more groups and produce
longer sequences if there are fewer pool neurons preferentially
targeting the chain, which can be facilitated by strong decay.
The length distributions reflect this association [Fig. 3(a)]:
for slower potentiation decay, chains tend to be shorter with a
smaller variance, compared to chains subject to stronger decay.

C. Lottery growth model

To test this association, chain length distributions are
generated by a simple lottery growth model. We model
chain growth as a random process: neurons in the chain are
drawn sequentially from a lottery of all neurons with equal
probability. For simplicity, we assume that there is one neuron
in each group in the chain, which is equivalent to setting
Nss = 1 and using one neuron in the training set. At the ith
iteration there are i neurons in the chain out of the total network
size N . This simple model allows us to derive the chain length
distribution analytically.

We first consider the case that the chain closes when a
previously drawn neuron is redrawn the second time, forming
a loop in the chain and stopping its growth. The probability
that the (i + 1)th neuron is drawn from the pool neurons and
the chain does not close at length i is

P (i + 1|i) = (N − i)

(N − 1)
. (1)

The probability that it is redrawn from the neurons in the chain
and the chain closes at this iteration is 1 − P (i + 1|i). Using
these conditional probabilities, the probability pa of a mature
chain with length a is given by

pa = [1 − P (a + 1|a)]
a−1∏
i=1

P (i + 1|i), (2)

which, plugging in Eq. (1), becomes

pa ≈ a − 1

N − 1

(
N − 1

N − a

)(N−a)

e−(a−1) (3)

after applying Stirling’s approximation. To calculate the mean
chain length as a function of network size N , we expand to
lowest order in 1/N and approximate the sum as an integral
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FIG. 6. (a) Example of reignition of a developing chain during the spontaneous activity period in a training trial. Spike raster of a network
of 400 neurons are shown. At 0 ms, the training neurons are stimulated, and spikes propagate down the chain until around 150 ms. Spontaneous
activity starts afterwards. The chain is reignited around 600 ms, evident from the sequential spikes shown in the shaded area. The reignition
starts from a random point in the chain. (b) Spike probability for 1000 neurons is plotted against neuron label over 105 ms of spontaneous
activity in a network with synaptic weights held fixed (no synaptic plasticity). The neurons are wired such that a synfire chain is embedded in
an otherwise randomly connected network. Neurons labeled 1 through 130 are connected into a synfire chain, with 1–5 forming the first group
and 126–130 forming the last. Synaptic weights of all other connections are drawn from the synaptic weight distribution in the dynamical
ground state [Fig. 4(a)]. Random spiking of neurons in the synfire chain often leads to reignition and propagation of spikes down the chain.
This makes neurons at the end of the synfire chain have the highest probability of spiking. The dashed line is the uniform spike probability
expected in the absence of the embedded synfire chain. (c) Preferential targeting emerging during training is measured by averaging the sum
of active synaptic weights targeting the chain over the length of the chain. This is plotted as a function of partial chain length over 5 × 104

training trials for two different values of the potentiation decay. The “enhancement” is calculated as the sum of weights divided by the average
sum of weights onto a pool neuron in the stable ground state. This measurement was repeated over 10 independent instances of the network.
Also measured and averaged (dotted lines) is the sum of weights targeting random pool neurons. Pool neurons are more likely to target chain
neurons than other pool neurons and the likelihood increases as the chain grows.

to find

〈a〉 =
∞∑

a=1

apa ≈ 1 − N e−N/2 +
√

2N

∫ √
N
2

0
dz e−z2

. (4)

As N → ∞, the mean chain length is on the order of
√

N

and is unbounded. This is because the chance of redrawing
neurons in the chain is zero when N → ∞.

We now consider the case that the chain also closes when
a pool neuron preferentially connected to the chain is drawn,
in addition to redrawing a neuron in the chain. As we have
shown in the previous section, slower potentiation decay
enhances the probability of preferential targeting of the chain
and reduces mean chain length [Fig. 3(a)]. To model this effect,
we introduce a parameter p0, which is the probability that a

pool neuron is preferentially targeting one neuron in the chain.
The probability that the (i + 1)th neuron is drawn from the
pool and does not close the chain is

Q(i + 1|i) = N − i

N − 1
(1 − p0)i . (5)

There are two scenarios in which the chain ends with a neurons.
One, when the chain has length a − 1, it can recruit a neuron
from the pool of N − (a − 1) neurons that has at least one
connection onto a chain neuron. Two, when the chain has
length a, it can recruit one of the a − 1 neurons above it in the
chain. Therefore, the probability of the chain closing at length
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a has two terms:

pa =
[
N − (a − 1)

N − 1
− Q(a|a − 1)

]

×Q(a − 1|a − 2) · · · Q(2|1) + a − 1

N − 1
×Q(a|a − 1) · · · Q(2|1). (6)

In the first term, the quantity in the brackets is the probability
of selecting a pool neuron that has at least one connection onto
a chain neuron. Equation (6) can be rewritten into the form
of Eq. (2), with the conditional probability of the chain not
closing at length i modified to

P (i + 1|i) = (N − i)

(N − 1)
(1 − p0)i−1. (7)

Given the above conditional probability, the probability distri-
bution of chain lengths is then

pa = [(N − 1)(1 − p0)−(a−1) − (N − a)]

×p(RR)
a

(1 − p0)
1
2 a(a−1)

a − 1
, (8)

where p(RR)
a is Eq. (3), the probability of the chain length

assuming no preferential targeting.
Equation (8) can be simplified in the large N limit and

moments of this distribution can be computed [50]. However,
the expressions are too onerous to print here. A notable feature
is that the mean of this distribution approaches a finite limit as
N → ∞. In this limit,

P (i + 1|i) = (1 − p0)i−1, (9)

and the probability of the chain closing at length a becomes

pa = (1 − p0)(a−1)(a−2)/2 − (1 − p0)a(a−1)/2, (10)

according to Eq. (2). The mean chain length is

〈a〉N→∞ =
∞∑

a=1

apa = 1 +
∞∑

k=0

[(1 − p0)1/2](k+1)k

= 1 + ϑ2[z = 0,(1 − p0)1/2]

2(1 − p0)1/8
, (11)

where ϑ2(z,q) is the Jacobi theta function [51]. This is a
finite number. Since every neuron in the pool has a nonzero
probability of preferential targeting the chain, the mean chain
length does not diverge even for N → ∞.

In Fig. 7(a) we display several chain length distributions
for different p0. As p0 is increased, the distribution shifts
toward shorter chains and becomes sharper, indicating that the
chains close at an increasingly predictable length. This trend
corresponds to the sharpening of the length distribution of
synfire chains as the potentiation decay is slowed, shown in
Fig. 3(a).

To confirm the model prediction that the mean chain length
approaches an asymptotic value even as the network size grows
very large, we performed a set of simulations with different
network sizes. We set Nss = 1 and the number of training
neurons to 1 to make the simulations directly comparable to
the model. Since neurons cannot cooperate, the variance of the
GWN used in the simulations was reduced to σ 2

V = 1 mV2.
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FIG. 7. Chain length distributions from the lottery growth model.
(a) Chain length distributions are plotted for different probabilities
p0 from the pool neurons to the chain. As p0 decrease, the mean
and the variance of the distribution increase. For p0 = 0, there is no
preferential targeting, and the mean length and variance are maximal.
(b) Comparison of the mean chain length as a function of the network
size between the model and the simulations. The simulations were
done for five network sizes. For each network size, 150 simulations
were performed. The data points are the mean chain length and
the error bars indicate the standard error of the mean. The model
prediction is plotted as the solid line. The parameter p0 in the model
was picked such that the root-mean-square error between the
predictions and the simulations at the five network sizes is minimized.
The dotted line is the prediction for p0 = 0, for comparison.

Also the LTD time constant τD was set to 10 ms (see below).
The potentiation decay was kept constant. The mean chain
lengths in the simulations are well fit with the model using a
single value of p0, and show clear sign of saturation as the
network size increases [Fig. 7(b)]. This trend is also observed
in the fully complex, cooperative simulations which produce
synfire chains. Figure 3(b) is indicative of an upper bound on
the length of the emergent synfire chain as the network size is
increased.

An minor effect omitted from the lottery growth model that
also contributes to the shape of the length distribution is the
LTD window function [see Eq. (A9) in the Appendix]. The
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FIG. 8. Mean chain length is offset with the LTD window size
τLTD.

width of the window controlled by τD sets a soft minimum on
sequence length. This effect was mentioned in [25]; here we
show more detailed measurements in Fig. 8. The effect can be
attributed to reliable propagation of the training signal along
a partially formed chain during each trial. A recruited neuron
may target an upstream chain neuron directly or by targeting
a pool neuron that is targeting the chain, contributing to the
likelihood of chain closure. However, during each training
trial upstream chain neurons spike before the newly recruited
neuron. Therefore, the synapse onto the targeted neuron is
weakened by LTD. If the temporal distance from the spike of
the targeted neuron to that of the recruited neuron falls within
the LTD window, the weight reduction quickly silences the
synapse and any possibility of reconnection is eliminated. In
the simulations that are used to validate the growth model
(Fig. 7), we used τD = 10 ms to minimize the LTD effect.

Besides LTD, there are other simplifications assumed by
our growth model. A time-independent model parameter p0

describes the probability that a pool neuron targets one of
the entrained sequence neurons and that the chain closes on
itself by recruiting such a neuron. This assumption ignores
the nonequilibrium dynamics of the weight distribution as
the chain recruits additional neurons. Reignition of the partial
chain precedes development of connections that preferentially
target the chain. This is a random event that occurs at
finite intervals, implying that preferential connectivity has
an associated time scale depending on the probability of a
reignition event. The response time of preferential targeting
can be seen directly in Fig. 6, showing that the sum of weights
targeting the chain, averaged over all members, saturates only
after a number of groups have formed. The above discussion
of the effect of the LTD window function also indicates that
p0 is not uniform over the length of the partial chain. In fact,
it is effectively zero for neurons immediately upstream from
the end of the chain. Furthermore, because chain reignition is
a random process driven by spontaneous activity, fluctuations

in the strength and number of synapses targeting the partial
chain may contribute to the probability of closure. A constant
p0 ignores such fluctuations. However, the model still gives
reasonably accurate predictions.

IV. DISCUSSION

In large recurrent networks with STDP, axon remodeling,
and an activity-independent potentiation decay of synapses,
we observed the emergence of long, stereotypical sequences
of spikes. The sequences are produced by stable synfire
chain topologies that self-organize via a stochastic growth
process. We studied the distributions of synfire chain lengths
and concluded that the rate of potentiation decay in our
synaptic plasticity model primarily controls the shape of the
distributions. The chains develop in response to a stimulus
presented to the network in a dynamic ground state, in which
the distribution of synaptic weights is invariant to synaptic
modifications due to spontaneous activity on the network. This
network state would not exist without the potentiation decay.

Synfire chain growth in our network model results from
a global response of the connectivity among the neurons to a
stimulus that targets only a small subset of the population—the
training neurons. Repeated stimulations of the training neurons
leads to iterative growth of a synfire chain embedded in the
network. This result was expected based on previous work
[25]. However, what was not expected, but what we observed,
is global response of the connectivity as the chain develops.
As the sequence begins to emerge, neurons in the pool are
increasingly likely to target the neurons in the chain. We sug-
gest this process of targeting the strongly connected neurons
in the chain is loosely analogous to preferential attachment
in other complex networks [52]. In contrast to other systems
with preferential attachment, a scale-free distribution does not
emerge from training because of the topological constraint
imposed on the network by axon remodeling. The complex
response of synapses throughout the network illustrates coevo-
lution of spike activity (the emerging sequence) and synaptic
topology (preferential targeting). We expect this observation
generalizes to other recurrent network models with STDP in
which spike sequences emerge. Since pre- to postsynaptic
strengthening is a common feature of STDP models, other
neurons will attach to sequence members when a sequence
is initiated by spontaneous activity. We believe our insight
may explain the observation of neuron clustering [8,53,54]
and small-world network degree distributions [10,55] in other
studies where the number of strong connections a neuron can
make is unconstrained.

The coevolution of the network activity and network
connectivity in response to an external stimulus is reflected
in the spectrum of length distributions of the synfire chains.
When the potentiation decay is too slow to sufficiently reduce
the weights of connections from pool neurons onto a partially
formed chain, the variation of chain lengths is reduced.
When potentiation decay is fast, the number of preferential
connections is reduced and the synfire chain has an opportunity
to grow longer. We contrast our mechanism for synfire chain
development with other studies in which chains emerge in
a recurrent network, such as in Fiete et al. [27]. In Fiete’s
model, the synaptic plasticity rules are designed in such a way
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that each neuron (or group of neurons receiving correlated
external input) must connect to one other neuron (or neuron
group) that is not already targeted. The selection of target is
random, which leads to multiple closed loops where every
neuron (or neuron group) is incorporated into a loop. The
distribution of chain lengths in this model follows a power
law. Hence short chains are more numerous than long chains.
In contrast, the distribution of chain lengths in our model is
close to a skewed Gaussian. There are typical chain lengths,
and short chains are rare. In our model, not every neuron
is part of the chain. We introduced a growth model that
incorporates preferential targeting to confirm the general form
of the length distributions of the chains. The growth model is
verified with corresponding simulations of networks producing
single-neuron chains. The model illustrates tuning of the length
distribution through the potentiation decay rate. Furthermore,
it predicts that the mean chain length approaches a constant
in the limit of large network size. Simulations of the more
complex process of synfire chain growth confirm the same
saturation effect (Fig. 3). This is in contrast to the case of
p0 = 0, for which the mean length diverges as

√
N . Any small

preferential targeting probability p0 limits the mean length as
N → ∞. This result indicates that chain size is bounded softly,
even in the limit of very large networks. It would be interesting
to confirm this plateau effect in recurrent networks larger than
those we were able to simulate. In at least one case we know
of [26], a much larger network has been simulated. However,
chains did not emerge upon externally stimulating the network
in this study. Contrasting the result of this study with our
own, we have validated the iterative recruitment of synfire
chain groups using a power-law STDP rule [12] instead of
the additive LTP-multiplicative LTD model [see Eqs. (A8) and
(A9)] introduced by [56]. Additionally, we observe the growth
process is unaffected when setting the number of allowed
strong connections to larger values (50 instead of 5 used in
the simulations presented in the Results), demonstrated also
in [25]. Key differences that may account for the emergence
of chains in our model are, dually, the vast restructuring of
the network connections allowed by imposing an activation
threshold on each synaptic weight, and also restricting the
influence of a single neuron by imposing the axon-remodeling
rule.

Before training, networks are initialized to a dynamic
ground state. The distribution of synaptic weights in a ground-
state network is stationary while neurons are spontaneously
active. Synapses are activated and silenced by random activity,
and the average flux of weights across the active threshold
is zero. Our synaptic dynamics model is distinguished from
others in two ways. One, we impose an activation threshold
on a synaptic weight between every pair of neurons in the
network. The picture that emerges is one in which neurons
are actively connecting and disconnecting to other neurons
in the population freely and on a relatively short time scale,
minutes to hours. A number of imaging studies support this fast
restructuring of network connectivity patterns [46]. The time
scale of emergence and subsequent withdrawal of dendritic
spines can be as short as 10 min and has been linked to
synaptic activity [57]. Network rewiring is not permitted in
all but a few network growth models that have been proposed
[58,59]. Instead, it is much more common to select a priori the

postsynaptic targets of each neuron. We argue that this model-
ing choice neglects an important feature of biological networks
and places limits on the emergent topology of the network.
Two, we subject all synapses to an activity-independent decay.
We propose that this is related to the widely observed decay
of the early phase long-term potentiation (E-LTP). The time
scale of the potentiation decay is several hours [45], much
longer than the length of an individual training trial. The
role of the potentiation decay is to avoid the accumulation of
random potentiation of synaptic weights known to destabilize
the network dynamics [12]. The combination of these two
rules yields a robust spectrum of stationary network states. As
a final note, we compare our network rewiring rules with a
similar approach taken by Iglesias et al. [59]. In this study a
recurrent network is initialized with all-to-all connectivity and
network connections are eliminated via STDP. This modeling
choice is also notable in that final network connectivity is not
limited by only modifying weights between specific pairs of
neurons. However, it is unclear from the results of this study
whether sequences emerge after pruning.

The stability of the ground-state network indicates the
rules of our model encode a homeostatic mechanism [60].
Several other models of homeostatic mechanisms have been
proposed recently, including a sliding modification threshold
based on postsynaptic firing history [61], a dependence on
fluctuations of postsynaptic membrane potential [62], and
heterosynaptic plasticity that limits the total weight targeting a
single neuron [27]. An overlooked mechanism that we propose
is activity-independent, multiplicative rescaling of weights,
as we have implemented here, potentiation decay, or decay
of E-LTP. This form of LTP returns synaptic efficacies to
the baseline within 3 h [45] and is independent of protein
synthesis. Only through repeated potentiation can E-LTP
turn into the late phase LTP (L-LTP), which is maintained
by protein synthesis and can last over days and weeks
[45]. In our model, consistently potentiated synapses turn
into supersynapses whose decay is much weaker than other
active synapses. The supersynapses can be considered in
the L-LTP state. Emergence of the synfire chain relies on
stabilization of the small percentage of supersynapses, while
there are many weaker, more transient synapses. This long-tail
synaptic weight distribution is consistent with physiological
observation [48,49] and appears in other theoretical studies
[63,64]. The functional role of E-LTP decay is largely ignored
in the LTP literature. Our model suggests that the E-LTP
decay may be crucial in stabilizing synaptic weight distribution
against random accumulations of LTP through spontaneous
activity. Moreover, the E-LTP decay can be important in the
formation of functional networks through STDP. The time
scale of the potentiation decay in our model is congruent with
time scales of E-LTP decay, which can be seen with an order of
magnitude estimate. If we assume learning occurs on a scale of
tens of days and 104 training trials are necessary for synaptic
chains to crystallize, this places the time scale corresponding
to our decay parameter β, which we vary from 0.9 to 0.99, in a
range of 103 and 104 s. It will be interesting to test these ideas
by manipulating the E-LTP decay constants in developing or
learning brains in vivo.

A natural extension of this work is to construct a growth
model in such a way that more complex asymptotic synaptic
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FIG. 9. Simulations of a 2500 neuron network with two training
sets. Preferential targeting causes the two chains to merge.

topologies emerge. Many learned motor behaviors can be
complex. For example, stochastic ordering of distinct elements
of a behavior is one kind of behavioral complexity. The song of
the Bengalese finch can be described by this type of stochastic
process [65,66]. A single synfire chain cannot capture this
complexity since they produce only a single spike sequence;
multiple chain or branching chains would be necessary. One
possible scenario for growing multiple chains in the same
network would be to have distinct sets of training neurons.
However, it turns out that preferential targeting of sequence
members within the network prohibits the development of
distinct synaptic structures. We implemented two distinct
training groups of 5 neurons in a network of 2500 neurons.
A training neuron set is excited at the beginning of each
learning trial. The set which is excited on a particular trial
is selected randomly with equal probability. In Fig. 9 we
display the resulting growth. The chains develop several
groups individually, but ultimately they merge to a single chain.
Initially, the training neurons seed two disjoint sequences that
recruit targets iteratively. Emergence of synfire groups embeds
two disjoint sequences in the network. These sequences are
occasionally activated by spontaneous activity. Therefore,
neurons in the pool will target the partial chains preferentially.
In particular, neurons at the end of one of the chains may target
neurons in the other chain with elevated probability. Once one
chain reliably activates neurons in the other chain, they will
merge. Merging occurs reliably each time we simulated two
training groups. Other growth mechanisms must be present,
or the chains must be encoded within distinct populations of
neurons. This conclusion is consistent with other studies, such
as [67].

V. CONCLUSIONS

In a recurrent network of neurons driven by high-frequency
noisy input and synapses governed by a set of plasticity
rules which include STDP, a potentiation decay, and axon
remodeling, we showed that neurons cooperate via convergent
synapses to self-organize into a synfire chain characterized
by a precisely timed sequence. The network is initialized in
a state characterized by a statistically stationary distribution
of synaptic weights, invariant to network spontaneous activity.
The combination of a potentiation decay plus an activation
threshold imposed on the synaptic weights provides a home-
ostatic mechanism within the network. A small subset of

neurons stimulated by a strong excitation forms the seed for
recursive synaptic growth of synfire groups. During repeated
presentations of this stimulus and emergence of the chain, we
observe a complex response of the network connectivity that
is reflected in the distribution of asymptotic chain lengths.
We have demonstrated a clear example of interplay between
neural activity and emergent synaptic topology in a developing
network.
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APPENDIX

1. Neural dynamics

The simulated networks consist of N excitatory,
conductance-based, pulse-coupled leaky integrate-and-fire
(LIF) neurons. The state of the ith neuron is described by
a single variable Vi , its membrane potential, which obeys

τ
dVi

dt
= L − Vi(t) + Si(Vi,t), (A1)

where Si(Vi,t) is synaptic input to the membrane. The LIF
neuron requires several parameters: leak reversal potential L =
−70 mV, membrane time constant τ = 20 ms, spike threshold
θ = −54 mV, and reset potential VR = −70 mV. If Vi = θ ,
the neuron emits a spike and is instantaneously reset to VR .

The synaptic input to the ith neuron Si(Vi,t) consists of
three sources: a noisy external drive, an excitatory conduc-
tance, and an inhibitory conductance:

S(Vi,t) = [Iext + ξi(t)] + g
(E)
i (t)[E(E) − Vi]

+ g
(I )
i (t)[E(I ) − Vi]. (A2)

We choose the reversal potentials E(E) = 0 mV and E(I ) =
−75 mV. The drive includes a Gaussian white noise (GWN)
term ξi(t), obeying 〈ξi(t)〉 = 0 and 〈ξi(t)ξi(t ′)〉 = σ 2

V δ(t − t ′)
with all higher-order correlations equal to zero. The noise
is uncorrelated across individual neurons. Driving current
is Iex = 25 mV and σ 2

V = 10 mV2. Training neurons (see
Methods) are subjected to larger driving current (100 mV)
for the first 8 ms of each training trial. The external drive
originates in upstream regions, which we do not simulate.
Gaussian white noise is commonly employed to model this
input [68].

The conductances g
(E)
i (t) and g

(I )
i (t) take the form of sums

of δ functions centered on the spike times of neurons in the
network. Specifically,

g
(E)
i (t) = τ

N∑
j=1

∞∑
p=1

G
(E)
j,i δ

(
t − T (j )

p

)
, (A3)

where G
(E)
j,i is the excitatory synaptic weight from neuron j

onto i and T
(j )
p is the time of the pth spike of neuron j . Weight

G
(E)
j,i is zero if j does not have a synapse onto i. G(E) is in a
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range [0,0.275], expressed as a multiple of the neuron’s leak
conductance. Also, we forbid self-synapses: Gi,i = 0.

2. Global inhibition

Global inhibition, i.e., inhibition that targets all neurons,
is concurrent with each spiking event in the network. The
inhibitory conductance takes the form

g
(I )
i (t) = τ

N∑
j=1

∞∑
p=1

G(I )
n δ

(
t − T (j )

p

)
. (A4)

Here G(I )
n is the inhibitory conductance on each excitatory

neuron induced by n nearly synchronous (within the time
resolution Tres; see Methods, Sec. A) spikes of the excitatory
neurons at any single iteration of the population dynamics.
G(I )

n is computed under the following assumptions: (1) the
feedback inhibition is mediated by NI inhibitory neurons;
(2) each excitatory neuron randomly connects to k inhibitory
neurons; (3) when excited, an inhibitory neuron emits a
single spike with certainty regardless of the number of nearly
synchronous spikes it receives. The maximum inhibition that
can be provided to an excitatory neuron is NIG

(I )
1 , where G

(I )
1

is the weight of a single inhibitory synapse. We can derive that

G(I )
n = G

(I )
1 s(n) = G

(I )
1

n−1∑
i=0

k

(
1 − k

NI

)i

. (A5)

Here s(n) is the average number of inhibitory neurons
contacted by n excitatory neurons. Each term in the sum over
i in Eq. (A5) is the average number of addition interneurons
contacted by the (i + 1)th excitatory neuron. Note that (1 −
k/NI )i is the probability that an inhibitory neuron is not yet
contacted by previous i excitatory neurons. For all simulations,
we pick k/NI = 0.05 and G

(I )
1 k = 0.8.

3. Simulation algorithm

The computational advantage of using pulse-coupled neu-
rons is that the response of each neuron to a spike is
instantaneous and can be calculated by plugging Eq. (A3) and
Eq. (A4) into Eq. (A1) and integrating over the δ functions in
an infinitesimal neighborhood ε around spike time T

(p)
j [29].

The result is

Vi

(
T

(p)
j + ε

) = e−(G(E)
j,i +G(I ))

[
Vi

(
T

(p)
j − ε

) − G(I )E(I )

G
(E)
j,i + G(I )

]

+ G(I )E(I )

G
(E)
j,i + G(I )

(A6)

as ε → 0. Since the interactions are instantaneous, between
spikes the probability distribution ρMP describing the time
evolution of the membrane potential is the solution of a Fokker-
Planck equation [31]

∂ρMP

∂t
(v,t ; W ) = − ∂

∂v

[
L + Iex − v

τ
ρMP(v,t ; W )

]

+ σ 2
V

τ

∂2ρMP

∂v2
(v,t ; W ), (A7)

where the variance of the distribution in the large t limit σ 2
V =

10 mV2. W is the initial value of the membrane potential.
A fast event-driven algorithm [28] has been developed to
generate spike activity on networks of pulse-coupled neurons
with GWN using “lookup tables” containing the solutions
to Eq. (A7), as well as distributions of spike threshold first
passage times [69] describing spike-timing distributions.

The algorithm has four steps.
(1) Calculate a predicted spike time for each neuron, given

an initial value of the membrane potential W , by sampling the
first passage time distributions.

(2) Identify the neuron with the minimal predicted spike
time. Also, identify any neuron that is predicted to spike within
Tres = 3 ms of the neuron with the minimal predicted spike
time. These neurons will be next to spike.

(3) Assign a membrane potential to each neuron that does
not spike by sampling the membrane potential distributions at
the spike time calculated in step (2). Reset the neurons that
spike to VR .

(4) Apply Eq. (A6) to determine the membrane potentials
immediately after the spike is applied.

(5) Calculate new values of synaptic weights according to
STDP and other synaptic dynamics rules.

These steps are iterated as long as desired.

4. STDP window

The weight of a synapse is updated according to an STDP
rule during the last step of the simulation algorithm. The
weight of a synapse from excitatory presynaptic neuron i to
postsynaptic neuron j is Gi,j . We implement the additive-
multiplicative rule [56]. We introduce also a tunable scale
factor R [70]. The weight is modified using the following
STDP window:

Gi,j → Gi,j + RAP GP FP (|t |), (A8)

Gj,i → Gj,i − RADGj,iFD(|t |), (A9)

with t = T (j ) − T (i), the spike time difference, AP = 0.01,
AD = 0.0105, and unless otherwise specified GP = 0.1. We
impose RAD < 1 to ensure non-negative weights. Weights are
clipped above Gmax = 0.275. The long-term potentiation (P)
and depression (D) function is defined as

FP (D)(t) =
{

(1 ± f0)t/tP (D) ∓ f0 if t < tP (D),

e−(t−tP (D))/τP (D) if t � tP (D).
(A10)

This rule is identical to the rule proposed in the Jun-Jin model
[25] except for the introduction of an additional parameter
f0. For nonzero f0, there is a net reduction in weight for
t = 0 [71], the magnitude of which is controlled by the
parameter f0; we pick f0 = 0.25. This rule has been shown
to be equivalent to the effect of jitter on the arrival times of
pre- and postspikes at the synapse and complements the time
resolution we impose on the spike arrival times. Functionally,
it discourages connections between neurons that spike reliably
within Tres and effectively reduces any of the weights of
extraneous active synapses that may exist among neurons
recruited to the same synfire group.
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