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Speech recognition in noisy conditions is a major challenge for com-
puter systems, but the human brain performs it routinely and accurately.
Automatic speech recognition (ASR) systems that are inspired by neu-
roscience can potentially bridge the performance gap between humans
and machines. We present a system for noise-robust isolated word recog-
nition that works by decoding sequences of spikes from a population of
simulated auditory feature-detecting neurons. Each neuron is trained to
respond selectively to a brief spectrotemporal pattern, or feature, drawn
from the simulated auditory nerve response to speech. The neural popu-
lation conveys the time-dependent structure of a sound by its sequence
of spikes. We compare two methods for decoding the spike sequences—
one using a hidden Markov model–based recognizer, the other using a
novel template-based recognition scheme. In the latter case, words are
recognized by comparing their spike sequences to template sequences
obtained from clean training data, using a similarity measure based on
the length of the longest common sub-sequence. Using isolated spo-
ken digits from the AURORA-2 database, we show that our combined
system outperforms a state-of-the-art robust speech recognizer at low
signal-to-noise ratios. Both the spike-based encoding scheme and the
template-based decoding offer gains in noise robustness over traditional
speech recognition methods. Our system highlights potential advantages
of spike-based acoustic coding and provides a biologically motivated
framework for robust ASR development.

1 Introduction

Despite significant advances in automatic speech recognition (ASR) over
the past several decades, humans still outperform the best artificial systems,
especially on recognition tasks in noisy background conditions (Carey &
Quang, 2005; Sroka & Braida, 2005; Cooke, 2006; Meyer, Wesker, Brand,
Mertins, & Kollmeier, 2006; Barker, Vincent, Ma, Christensen, & Green,
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2013). This performance shortfall is a major barrier to the widespread adop-
tion of speech recognition technologies (Deng & Huang, 2004; Scharenborg,
2007). A growing number of ASR studies seek to better approximate human
performance by emulating the speech processing performed by the brain.
Such systems can improve on traditional methods by finding advantageous
neuronal representations for sound and through new decoding paradigms
designed to exploit them.

Experimental neuroscience has recently produced significant insights
into auditory coding that can inform ASR development. Converging evi-
dence shows that precisely timed and reproducible spike responses carry
information in the inferior colliculus and auditory cortex, forming repre-
sentations known as spike-timing codes (DeWeese, Wehr, & Zador, 2003;
Escabı́, Miller, Read, & Schreiner, 2003; Lu & Wang, 2004; Elhilali, Fritz,
Klein, Simon, & Shamma, 2004; Heil, 2004). Such codes may be implicated
in processing natural stimuli such as animal vocalizations (Schnupp, Hall,
Kokelaar, & Ahmed, 2006; Huetz, Del Negro, Lebas, Tarroux, & Edeline,
2006; Huetz, Philibert, & Edeline, 2009; Kayser, Montemurro, Logothetis, &
Panzeri, 2009; Kayser, Logothetis, & Panzeri, 2010) and speech (Steinschnei-
der et al., 2005; Nourski et al., 2009) and may have a role in separating such
signals from noise (Las, Stern, & Nelken, 2005; Bar-Yosef & Nelken, 2007).
Although these spike representations appear to be a pervasive and impor-
tant form of auditory coding, little is known about how they can be used to
perform robust pattern recognition.

In this letter, we present a novel approach to ASR that pairs spike-based
acoustic coding with a decoding scheme specifically designed to recognize
speech patterns in noisy conditions. A major source of performance loss
for traditional ASR systems is that they model the statistics of speech using
hidden Markov models (HMMs) but use acoustic representations whose
statistics are strongly influenced by the acoustic environment. This causes
a mismatch between the models and the observed speech, particularly in
noisy conditions not seen during model training. By contrast, in our sys-
tem, we aimed to develop a scheme for producing spike representations
of speech that are relatively invariant under additive noise and design a
decoding scheme that avoids noise modeling but tolerates arbitrary cor-
ruptions of the spike code.

1.1 System Overview. Our encoding scheme is based on a model of
acoustic feature detection in the auditory cortex. Cortical neurons in sev-
eral species have been shown to respond preferentially to behaviorally rel-
evant natural stimuli such as conspecific vocalizations (Rauschecker, Tian,
& Hauser, 1995; Lewicki & Arthur, 1996; Sen, Theunissen, & Doupe, 2001;
Wang & Kadia, 2001). A recent work further shows that such selectively
tuned neurons can produce responses that are insensitive to background
noise (Moore, Lee, & Theunissen, 2013). In the spirit of these findings, we
propose that artificial neurons trained to selectively respond to specific



Noise-Robust Speech Recognition 525

e

d

c

Fr
eq

ue
nc

y

b

a

N
eu

ro
ns

A B
e

d

c

b

a

N
eu

ro
ns

Template sequence

a

b c d e

a b c d e

a e c d ea

Testing sequencee

Time Time

Figure 1: Illustration of concepts used in the design of our system. (A) A word
(spectrogram shown at top) is represented by the spikes of a population of
feature-detecting neurons (center), each of which is selectively tuned to a spec-
trotemporal speech feature. The spike code is translated into a sequence of
neuron labels (bottom). (B) In noise, the code is corrupted by spike insertions
and deletions (top), but a subset of spikes maintains its sequence from clean
conditions (gray boxes). The invariant sub-sequence is identified by computing
the longest common sub-sequence between the testing sequence and a tem-
plate sequence stored from training data (arrows, bottom). Only five neurons
are shown for illustrative purposes; in our experiments, 1100 are used.

speech features can generate robust spike codes by effectively ignoring sig-
nals that do not resemble their preferred stimuli. That is, in contrast with
more traditional acoustic representations in which noise is faithfully con-
veyed along with speech, these neurons may represent only those elements
of a sound that resemble speech in clean conditions.

To implement this idea, we trained each of a population of spiking artifi-
cial neurons (“feature detectors”) to identify a brief spectrotemporal pattern
(“feature”) in the simulated auditory nerve response to speech. The features
include onsets, offsets, and up-and-down frequency sweeps corresponding
to speech formant structures (see Figure 1A, top). The spikes of the fea-
ture detectors represent speech in terms of the sequential appearance of its
features through time. Due to our method of discriminatively training the
neurons, the spikes often persist, with timing relatively unaltered, when
the speech is mixed with noise.

In decoding the spikes of the feature detectors, we chose to disregard the
precise length of the time intervals between spikes and treat the code as a
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sequence of neuron labels, its spike sequence (see Figure 1A, bottom). This
was motivated in part by recent biologically motivated spike decoding
studies that operated on sequences of spikes (Loiselle, Rouat, Pressnitzer,
& Thorpe, 2005; Jin, 2004, 2008). It also has the advantage of making our
system robust to temporal warping due to speech tempo variations, which
poses a major problem for some other spike decoders (Gütig & Sompolinsky,
2009). We found that the spike sequence code in itself offers improved noise
robustness over more traditional representations when used with an HMM-
based decoder. However, we obtained even further performance gains us-
ing a novel template-based scheme in which test samples are compared
directly to speech exemplars stored from training data. The scheme cen-
ters on a novel speech similarity measure based on the length of the longest
common sub-sequence (LCS) between feature detector spike sequences (see
Figure 1B). We were motivated by the observation that in noise, although
the spike code is in general corrupted by the insertion and deletion of spikes,
a subset of spikes often maintains a sequence similar to that seen in clean
conditions. This sub-sequence typically forms a good match with some sub-
sequence within templates computed for the same word. The LCS algorithm
locates the best sub-sequence match between a test sequence and template,
allowing robust recognition based on a subset of spikes embedded in noisy
code.

We tested our system’s performance on isolated words from the
AURORA-2 noisy digits database (Hirsch & Pearce, 2000) and found
improved recognition results at low signal-to-noise ratios (SNRs) when
compared with an HMM-based system with missing data imputation
(Gemmeke & Cranen, 2008). This robust performance was attributable to
both the noise invariance of the spike sequence code and the noise tolerance
of the template-based decoding method. Significantly, unlike in many sta-
tistical ASR approaches, we achieved these results with a training scheme
that used only clean speech, without any noise modeling or multicondition
training.

1.2 Related Work. While we built our system largely from the ground
up based on notions of feature detection in the auditory system, our ap-
proach has precedents in a number of other ASR studies. The state of the
art in commercial software today lies in so-called connectionist ASR ap-
proaches, where artificial neural networks (ANNs) provide feature inputs
to HMM-based decoders (Bourlard & Morgan, 1994; Trentin & Gori, 2001).
In particular, systems using deep belief networks (DBNs) have recently pro-
duced significant improvements in recognition rates on large-vocabulary
recognition tasks (Mohamed, Dahl, & Hinton, 2012; Dahl, Yu, Deng, &
Acero, 2012; Hinton et al., 2012). In these systems, deep learning algorithms
are applied to large speech data sets in order to better model the variations
in speech due to noise and speaker variations. The ANNs can be trained
either to directly model the posterior probabilities of HMM states (hybrid
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systems) or to generate additional features within short time frames that are
generatively modeled by the HMM (tandem systems) (Hermansky, Ellis, &
Sharma, 2000). Tandem systems using DBNs were recently shown to offer
some advantages for noise-robust recognition on a task similar to that used
here (Vinyals & Ravuri, 2011).

Our approach is similar to these in its use of discriminatively trained ar-
tificial neurons, but the specific training algorithms and decoding methods
used here differ significantly from most connectionist systems. In partic-
ular, we formulate our training criterion as a simple binary classification
task (section 2), which permits relatively inexpensive training using a linear
support vector machine (SVM) (Vapnik, 1998). Additional novel elements
of our system are the variable rate of symbol generation by the feature de-
tectors, which provides flexibility in representing speech separately from
noise, and the discrete nature of the spike sequence code, which enables our
robust template-based decoding using the LCS. The similarities and differ-
ences between our system and connectionist methods are further explored
in section 6.

Our approach to acoustic coding aims to capture the physiologically
measured response properties of auditory cortical neurons. In this respect,
it recalls recent ASR studies that used efficient representation techniques
such as independent component analysis (ICA) (Hyvärinen & Oja, 2000)
and temporal linear generative models (TLGMs) (Smith & Lewicki, 2005) to
model neural responses. These methods have successfully predicted recep-
tive field properties in the peripheral auditory system (Smith & Lewicki,
2006) and in the midbrain and auditory cortex (Klein, König, & Körding,
2003; Carlson, Ming, & DeWeese, 2012), but so far they have offered limited
performance improvements when used for speech recognition (Kwon &
Lee, 2004; Rufiner, Martı́nez, Milone, & Goddard, 2007; Smit & Barnard,
2009; Sivaram, Nemala, Elhilali, Tran, & Hermansky, 2010). Our approach
also echoes studies that took a bottom-up approach to auditory coding by
modeling the spectrotemporal response characteristics of cortical neurons
using linear filter methods, for example, with two-dimensional Gabor filter
banks (Kleinschmidt, 2003; Mesgarani, Slaney, & Shamma, 2006). A method
for finding more general, nonparametric receptive fields using discrimina-
tive training has also been explored (Mesgarani, Sivaram, Nemala, Elhilali,
& Hermansky, 2009). These methods have yielded some ASR performance
improvements when used with HMM decoders (Zhao & Morgan, 2008;
Schädler, Meyer, & Kollmeier, 2012).

Our decoding method relates to another class of studies that used simpler
spike-based encoding methods than ours while focusing efforts on new,
biologically motivated decoders. For instance, spike codes generated by a
bank of single-frequency band onset and offset detectors have been used
as inputs to decoders that detected rapid sequences (Loiselle et al., 2005) or
spike synchrony (Gütig & Sompolinsky, 2009). In the latter case, this yielded
good results on a noiseless isolated digit recognition task. Another study
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used spikes derived from a cochleagram as input to a liquid state machine
for a digit recognition task, but the performance did not surpass the state
of the art (Verstraeten, Schrauwen, Stroobandt, & Van Campenhout, 2005).
While we do not attempt a network-based implementation of our decoding
method here, other studies of neural sequence recognition may pave the
way for such work in the future (Jin, 2004, 2008).

Template-based recognition has seen a resurgence of interest in recent
years, with a number of studies finding improved performance over HMM-
based methods (Axelrod & Maison, 2004; Aradilla, Vepa, & Bourlard, 2005;
Deng & Strik, 2007; De Wachter et al., 2007; Ramasubramanian, Kulkarni,
& Kämmerer, 2008; Seppi & Van Compernolle, 2010; Demuynck, Seppi, &
Van Compernolle, 2011). Many of these studies have focused on extend-
ing the classical ASR method of dynamic time warping (DTW) (Bridle,
Brown, & Chamberlain, 1983). Whereas in standard ASR systems a single
HMM is taken to represent the statistical variations of each word or phone,
in template-based systems, these variations are accounted for by storing
many instances of each word and comparing these directly with test data.
Template-based systems offer a number of advantages, including that they
avoid the limiting statistical assumptions of HMMs and permit better incor-
poration of metadata such as speaker identity and gender. They are further
supported by psycholinguistic studies of pattern storage by episodic mem-
ory (Maier & Moore, 2005; Strik, 2006). However, most template methods
suffer from similar robustness problems to statistical methods, since noisy
speech often does not form a good match to the templates. Our system aims
to exploit the advantages of template-based methods while using a speech
similarity measure that is more robust to noise.

1.3 Outline. This letter is organized as follows. In section 2 we de-
scribe our spike-based encoding scheme and our procedure for training the
feature-detecting neurons. In section 3 we display receptive field charac-
teristics for the feature detectors to facilitate comparison of our auditory
model with physiological data. In section 4 we evaluate the robustness
of the feature detector code and compare its performance to a more tradi-
tional feature encoding using an HMM decoder. In section 5 we describe our
template-based sequence decoding scheme and demonstrate its improved
noise robustness. In section 6 we explore our system’s relationship to pre-
vious work in ASR and discuss the biological implications of our model.

2 Spike-Based Encoding Scheme and Training Procedure

Our approach to ASR centers on a method for representing speech by
the spiking response of auditory feature-detecting neurons. This encoding
scheme is realized using a two-stage model of acoustic processing in the
auditory system (see Figure 2). In the first stage, a simulation of the audi-
tory periphery transforms sounds into a firing rate representation on the
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Figure 2: Schematic of the speech representation scheme. The displayed curves
are real data from our experiments. The acoustic waveform for several dig-
its (left) is transformed into simulated AN firing rates (center; 3 of 32 fre-
quency channels shown). Several time-delayed copies of the AN response are
input to the feature detectors, which take a weighted sum over their inputs
(right; 3 of 1100 feature detectors shown). Spikes (shown as circles) are as-
signed at peaks in the response that surpass a fixed threshold (horizontal gray
lines).

auditory nerve (AN). In the second stage, feature detector neurons inte-
grate the AN response over short time intervals to produce spike responses
indicating the presence of specific spectrotemporal features. In this sec-
tion, we describe this encoding scheme in detail and define our method for
discriminatively training the feature detectors.

2.1 Auditory Model. Acoustic processing begins in our system with a
model of the auditory periphery. The peripheral model filters sounds into
bandpassed signals that are conveyed as simulated AN firing rates to the
feature detectors. This processing plays a similar role to the computation of
the spectrogram used in many standard ASR front ends.

For the results presented here, we used a peripheral model based on a
gammatone filter bank (Slaney, 1993), although roughly equivalent results
could be obtained using a spectrogram method (see section 5). Our filter
bank comprises 32 gammatone filters with center frequencies ranging from
100 to 4000 Hz on an equivalent rectangular bandwidth scale. To simu-
late hair cell transduction and the loss of phase locking in the ascending
auditory pathway, the filtered signals are half-wave-rectified, smoothed
and resampled at 8 ms intervals, and square-root-compressed. Adaptation
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processes that lead to relative level invariance at the level of cortex
(Dean, Harper, & McAlpine, 2005; Sadagopan & Wang, 2008) are ac-
counted for by normalizing each channel to unit variance for each speech
sample.

The central innovation of our encoding scheme is a model of feature
detection in the central auditory system. We trained feature detector neu-
rons to identify brief patterns in the AN signal across both the tempo-
ral and spatial (frequency) dimensions. This approach can be compared
with physiological findings in which a neuron’s ability to integrate over
time and frequency is often described by a spectrotemporal receptive field
(STRF; see section 3). Here, temporal integration is implemented by in-
cluding several time-delayed copies of the AN response as the input to
each feature detector (see Figure 2, center). Eight time-delayed copies of
the AN response comprise a 256-dimensional input signal s(t), which gives
the feature detectors a 64 ms “moving window” view of the sound. The
window size was chosen to be long enough for the feature detectors to
identify temporal structures such as up-and-down frequency sweeps, on-
sets, and offsets, but short enough that they responded only to mono- or
biphonetic features that are relatively invariant under longer-scale temporal
warping.

We modeled each feature detector as an artificial neuron that takes a
weighted sum σ (t) = w · s(t) of its inputs, and spikes at peaks in σ (t) that
exceed a fixed threshold (see Figure 2, right). In cases where multiple peaks
occur within a 100 ms interval, the largest peak is selected and the others
are suppressed. The weights w are trained for each neuron to maximize
its discriminative ability, as described below. Note that aside from the choice
of peripheral representation (spectrogram versus gammatone filter bank),
the integration over time and frequency performed in computing σ (t) is
similar to that performed in an STRF model. However, the assignment of
spikes to peaks in the above-threshold summation signal introduces an
additional nonlinearity that is not captured by an STRF.

2.2 Data Set. Training and testing of our system were carried out us-
ing speech recordings from the AURORA-2 database. AURORA-2 consists
of connected digits (“zero” through “nine,” plus “oh”) from the TIDIGITS
multiple-speaker database (Leonard, 1984) in clean and a variety of addi-
tive noise conditions. The training and testing utterances are spoken by
distinct sets of speakers. To obtain isolated digit samples, we segmented
the speech using HMM-based forced alignment (Yuan & Liberman, 2008).
This gives speech samples that convey the full variability of continuous
speech but allows us to focus on recognizing individual words indepen-
dent of the segmentation problem. In the case of noisy speech, alignments
were found for clean speech and then applied to the corresponding noise
mixes.
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Figure 3: Schematic of SVM training of the weight vector w for a single feature
detector. (Left) The AN responses to several words are visualized as trajectories
in a 256-dimensional space. (Right) A single point s+(t0) in the trajectory for
“two” is selected as the preferred feature; the remainder of the word (gray curve)
is not used in the training. Other words are concatenated to form the background
trajectory s−(t). The surfaces w · s = b + 1 and w · s = b − 1 (dotted lines) define
a margin separating the two training classes. The objective for SVM training is
to maximize the size of this margin.

2.3 Training Scheme. The response properties of the feature detectors
are set by training the weights w. The goal of the training is to find a
set of weights for each detector such that it will be unresponsive to most
sounds but will respond reliably to a selected spectrotemporal feature.
The procedure is as follows. For each feature detector, we select a single
clean digit exemplar, known as the positive training exemplar, and compute
its AN response with added delays s+(t). From this word, we randomly
select the response s+(t0) at a single time point to serve as the preferred
feature for the neuron. We also select a set of background training data
s−(t) consisting of concatenated, word-length responses to five exemplars
of each of the other digits, called negative training exemplars. For instance,
if the preferred feature is selected from within an exemplar of “two,” the
background data consist of concatenated exemplars of each of the digits
“one,” “three,” “four,” and so on. Note that while the full time-varying
responses of the negative exemplars are used in the training, only a single,
randomly selected time point t0 within the positive training exemplar is
used.

The training aims to find a weight vector w such that the neuron spikes
in response to the preferred feature but not in response to the background.
This is accomplished using a linear support vector machine (SVM) (Vapnik,
1998). Intuitively, we can visualize s+(t0) as a single point along the trajec-
tory s+(t) taken by the positive training exemplar through the space of fea-
ture detector inputs (see Figure 3). The trajectories defined by the negative
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training exemplars are combined to form a single trajectory s−(t) through
the space. After training, the weight vector defines a hyperplane that
maximally separates the preferred feature from the background. Formally,
the SVM finds a weight vector w and bias b such that w · s+(t0) = b + 1
and w · s−(t) < b − 1 for all t, with the margin of separation 1

||w||2 as large
as possible. We interpret the value b − 1 as the unit’s threshold, so that
the response to the preferred feature is as far above threshold as possible
while still keeping the background responses below.

Figure 4 shows the result of SVM training for a single feature detector.
At the upper left is the word-length summation response σ (t) to the pos-
itive training exemplar, that is, the word “two” from which the preferred
feature was selected. The response has an above-threshold peak at the time
of the preferred feature t0, so the neuron produces a spike and successfully
detects the feature. Shown at the lower left are the responses to the neg-
ative training exemplars that comprise the background. By design, these
responses all have peaks below the threshold and therefore do not produce
spikes.

To demonstrate the feature detector’s ability to generalize to data not
present in the SVM training, we also show in Figure 4 responses to ran-
domly selected independent testing exemplars of each digit. Exemplars
of “two” are termed positive testing exemplars. Because of variations in
pronunciation, we expect to detect features similar to s+(t0) only in some
of these exemplars. Indeed, only three of the five exemplars shown pro-
duce spikes, which we call hits. Exemplars of other digits are termed nega-
tive testing exemplars. Because the digits are mostly phonetically distinct,
we expect to detect few features that are similar to s+(t0) among these exem-
plars. Most of the negative testing exemplars accordingly have subthreshold
responses, but a few do produce spikes, which we call false hits.

2.4 Population Training. We created a population of feature detectors
sensitive to a broad range of speech features by repeating the above train-
ing procedure with different preferred features and background sets. One
preferred feature was randomly selected from an exemplar of each of the 11
digits spoken by each of 50 male and 50 female speakers in the AURORA-2
training set, for a total of 1100 features. Different background exemplars
were selected for the SVM training with each preferred feature. Note that
while the feature detector responses are temporally sparse due to their se-
lectivity to specific speech features, there is no independence constraint on
the responses, and in fact feature detectors that are tuned to similar features
are very likely to fire together.

Because of pronunciation variations, we do not expect to detect precisely
the same feature set in every exemplar of a given digit. Nevertheless, hit
rates and false hit rates over the testing data provide a useful comparison of
each feature detector’s performance on testing data. These rates are defined
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Figure 4: SVM training results for a single feature detector. Each plot shows
the summation response σ (t) of the neuron (arbitrary units) versus time for a
single word. Gray horizontal lines show the neuron’s threshold; circles indicate
the location of spikes. (Top left) The response to the positive training exemplar
of “two,” with a peak at the time of selected preferred feature. (Top right)
The responses to five testing exemplars of “two.” (Bottom) Responses to five
negative training (left) and testing (right) exemplars of each digit. Horizontal
and vertical scales are the same for all plots.

as the fraction of positive or negative testing exemplars during which a
detector produced a hit or false hit, respectively. Histograms of these rates
for the feature detector population are shown in Figure 5.
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Figure 5: Histograms of hit rates and false hit rates for the feature detectors in
clean conditions and in mixes with subway noise at 10 dB and 0 dB SNR. The
hit rate (false hit rate) is the fraction of positive (negative) testing exemplars for
each detector that produces a spike.

3 Spectrotemporal Receptive Fields

To facilitate comparison of our auditory coding model with physiological
data, we computed STRFs for the feature detectors. The STRF characterizes
the preferred stimuli of a neuron and is frequently used in experimental
studies (Aertsen & Johannesma, 1981). Formally, it is a linear estimate of the
input-output relationship of a neuron, where the input is a spectrographic
representation of sound s(f, t), usually the spectrogram, and the response
function r(t) is usually interpreted as a firing rate. The STRF is defined as
the kernel function h(f, t) in

rest(t) =
∫ fmax

fmin

∫ τmax

0
h( f, τ )s( f, t − τ )df dτ + r̄,

where rest(t) is the minimum mean square error estimate of r(t) and r̄ is
r(t)’s mean.

We computed the STRFs using the software package STRFlab, which fits
the kernel parameters using ridge regression (Theunissen, Sen, & Doupe,
2000; Moore et al., 2013). For the representation s(f, t), we chose the logarithm
of the spectrogram as computed by a short-time Fourier transform with
frequency limits fmin = 100 Hz and fmax = 4000 Hz. The response r(t) was
taken as the feature detector spike response smoothed by a gaussian filter
of width 10 ms. We used the spike responses to the clean speech of 10 male
and 10 female speakers in the AURORA-2 training set to compute each
STRF.

The STRFs display a variety of spectrotemporal modulations that in
many cases resemble the modulation structure in the preferred features
used for the training (see Figure 6). We characterized these modulations
using temporal and spectral modulation scores as in (Rodrı́guez, Read, &
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Figure 6: STRFs of the feature detectors. (A) Scatter plot of spectral versus
temporal modulation scores for the STRFs showing a trade-off between the two
types of structure. (B) The STRFs ranked by their combined modulation score
(MS) describing the degree of spectral versus temporal modulation. Crosses
indicate which STRFs are plotted below. (C) STRFs for selected feature detectors
as well as spectrograms of the preferred features used in the feature detector
training.
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Escabı́, 2010). These were calculated by taking the two-dimensional Fourier
transform of each STRF and finding its power centroid along the time and
frequency axes. As in Rodrı́guez et al. (2010), we found that the STRFs
exhibited a trade-off between temporal and spectral modulations. This is
because short speech segments used for training the feature detectors tend
to have strong spectral modulations (vowels) or temporal modulations
(consonants), but not both.

In order to display a set of STRFs representative of the full range of
modulation types, we ranked the STRFs using an overall modulation score
(see Figure 6B). This was defined as the temporal modulation score minus
the spectral modulation score, where each score was first normalized by
its mean over the feature detector population. A low modulation score
indicates a STRF with greater spectral modulation, while a high modulation
score indicates one with greater temporal modulation. We found that the
full range of STRF modulation types was essential to our system’s robust
recognition performance; any attempt to select a subset of feature detectors
based on its STRF characteristics yielded a decrease in performance (results
not shown).

The STRFs of the feature detectors can be directly compared with physi-
ological measurements to identify putative relationships between our sim-
ulated neurons and real neurons in the auditory system. The modulation
structure seen in our STRFs is more complex than that typically found from
neurons in the inferior colliculus (Lesica & Grothe, 2008; Versnel, Zwiers, &
van Opstal, 2009; Rodrı́guez et al., 2010), but is comparable to the relatively
complex shapes found in auditory cortical neurons using natural stimuli
(Bitterman, Mukamel, Malach, Fried, & Nelken, 2008; Laudanski, Edeline,
& Huetz, 2012; Moore et al., 2013). We explore further the relationship of
our encoding scheme to biological coding in section 6.

4 Robustness of the Spike Sequence Code

In designing our encoding scheme, we hypothesized that selective tuning
of the feature detectors could yield spike codes that are robust to acoustic
noise. In particular, since the detectors are trained to respond to specific
patterns derived from clean speech, we expect them to respond preferen-
tially to speech-like elements in sound while responding poorly to noise.
We evaluated this claim using speech from test set A of the AURORA-2
database, which includes mixes with babble, car, subway, and exhibition
hall noise at SNRs of 20 dB through −5 dB.

To give a sense of why the feature detector training yields a robust code,
in Figure 7 we show the summation responses σ (t) for three different feature
detectors in clean conditions and in mixes with subway noise. The noise
affects the shape of the responses, but due to the large margin afforded
by the SVM training, all of the response peaks shown here remain above
threshold. Furthermore, the timing of the feature detector spikes, which is
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Figure 7: Responses of three different feature detectors to three word-length
speech stimuli (one exemplar of “two,” “four,” and “six,” respectively) in clean
conditions and in mixes with subway noise at 10 dB and 0 dB SNR. Gray vertical
lines show the change in spike timing (i.e., the change in response peak location)
between clean conditions and 0 dB. Gray horizontal lines show the threshold
for each neuron.
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Figure 8: Spike code degradation in noise. Raster plots of feature detector
spikes are shown for a single exemplar of the word “five” in clean conditions
and in mixes with subway noise at 10 dB and 0 dB SNR. The feature detectors
are ordered by their spike response to this exemplar in clean conditions. Only
the 231 feature detectors that spike in clean conditions are shown.

determined by the positions of the response peaks, is shifted only slightly
by the noise.

Figure 8 displays the effects of the subway noise at the level of the
population spike code for a single word. Despite some changes in the spike
timing and some extraneous spiking compared to clean conditions, a subset
of well-ordered spikes is still visible at 0 dB. The effect of subway noise on
the feature detector population as a whole can also be seen in the hit rate
and false hit rate histograms in Figure 5. As the noise level increases, there
is an increase in the number of false hits for some feature detectors, but only
a modest decrease in the hit rate.



538 P. Schafer and D. Jin

4.1 HMM Decoding of the Spike Sequence Code. To test the feature
detector code’s robustness in the context of a speech recognition task, we
performed a comparison with a set of baseline frame-based features us-
ing an HMM-based decoder. This type of decoding forms the standard
paradigm for ASR, in which words (or sometimes phones) are statistically
modeled by HMMs, and unknown speech is recognized by comparison to
the models. In our case, for each encoding, we trained whole-word, left-to-
right HMMs with 16 states and no state skipping using the Hidden Markov
Toolkit (HTK) (Young et al., 2005). Since isolated word samples were used,
no silence model was needed.

For the baseline features, we used perceptual linear predictive (PLP)
coefficients, which are cepstral coefficients with additional perceptually
motivated spectral warping that increases their robustness to variations
(Hermansky, 1990). We computed 39 PLP coefficients (13 cepstral coeffi-
cients plus delta and acceleration) within 25 ms frames located at 10 ms
intervals. With the feature detector code, we considered only the sequen-
tial ordering of the spikes and not their precise timing, as described in
section 1. That is, the spike code was converted to a sequence of dis-
crete neuron labels ordered by their spike times (see Figure 1). In cases
where multiple spikes occurred at the same 8 ms peripheral model time
step, the corresponding neuron labels at that time step were placed in as-
cending order. Note that the assignment of neuron labels to neurons was
arbitrary.

For the PLP system, the HMM state emission probabilities were mod-
eled as a single gaussian mixture with diagonal covariance. For the spike
sequence code, discrete emission probabilities were modeled.

Recognition results for the two encoding schemes were obtained by
Viterbi alignment (HTK tool HVite) and are shown in Figure 9. The spike
sequence code gives superior recognition results across all noise levels.
Average recognition rates at each noise level can also be seen in the summary
results in Figure 12.

5 Template-Based Decoding Scheme

While the feature detector code in itself offered improved performance
when used with an HMM decoder, we sought an alternative decoding
scheme that could better exploit the regularities of the spike code in noise.
As previously noted, HMMs model the statistics of speech and therefore
suffer performance losses in noisy conditions where speech acoustics no
longer match the models. An alternative approach to HMMs that has gained
increasing currency in recent years is template-based (or exemplar-based)
recognition, in which statistical modeling is forgone altogether, and speech
is recognized through direct comparison with other prelabeled speech data.
However, most standard template-based systems also suffer robustness
problems since, under typical speech distance measures, noise-corrupted
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Figure 9: The spike sequence code gives improved recognition results over PLP
coefficients when used with an HMM decoder. Recognition rates are shown for
the four noise types in AURORA-2 test set A.

speech does not match any better to the templates than it would to a statis-
tical model.

Here we developed a form of template-based recognition specifically
designed to decode noise-corrupted speech, using a novel speech similar-
ity measure based on the LCS between spike sequences. The motivation
for our approach was illustrated in Figure 1. Although the feature detector
code has some inherent noise robustness, corruptions in the form of spike
insertions, deletions, and temporal shifting do occur in noise. On the other
hand, we observed that a subset of spikes often occurs in the same sequence
in noise as in clean conditions (see the spike raster plots in Figure 8). In-
deed, as seen in Figure 5, noise typically leads to an increase in the false hit
rate but minimally affects the hit rate, so that many of the spikes present in
clean conditions persist embedded in otherwise noisy code. This invariant
sub-sequence often closely matches some sub-sequence within template se-
quences computed for the same word in clean conditions. The LCS length
quantifies the best sub-sequence match between a test sequence and tem-
plate, allowing recognition based on only a subset of relatively uncorrupted
spikes in the code.

5.1 Speech Similarity Measure. Given two sequences of symbols
X = {x1, . . . , xM} and Y = {y1, . . . , yN}, the LCS is defined as the longest
sequence Z = {z1, . . . , zK} that can be composed by drawing elements in
left to right order, but not necessarily contiguously, from either X or Y. For
instance, in the example shown in Figure 1b, the sequences {a, b, c, d, e}
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Figure 10: LCS length distribution for a single sequence template derived from
an exemplar of “one.” The solid curves show the distribution of LCS lengths
with respect to testing exemplars of “one” (positive exemplars) and testing
exemplars of other digits (negative exemplars). The dotted curve shows the
distribution of LCS lengths with respect to a set of 100 randomly generated
sequences of equal length (see the text). The mean and standard deviation of
this random distribution are used to convert the LCS lengths of the testing data
(lower axis) into Z-scores (upper axis) that were used as a similarity measure
for template-based recognition.

and {a, e, c, d, a, e} have an LCS {a, c, d, e}, with an LCS length of 4. The
LCS length can be efficiently computed using a well-known algorithm in
dynamic programming (Bergroth, Hakonen, & Raita, 2000).

Our goal in the decoding scheme was to quantify the similarity of a test
utterance with a clean speech template using the LCS length of their spike
sequences. Words could then be recognized by finding their best matches
among a large bank of templates. However, we found that the raw LCS
length alone did not constitute a good sequence similarity measure because
some templates have longer average LCS lengths with test sequences than
others. This is due in part to the varied lengths of the template sequences
and in part to the varying average firing rates of the feature detectors:
long templates with many commonly occurring neuron labels tend to have
longer-than-average LCS lengths, leading to a bias toward recognition by
these templates. To normalize out these differences, we computed a distri-
bution of expected LCS lengths for each template using randomly generated
spike sequences. For a given template, we generated 100 spike sequences
of the same length, with each spike randomly assigned to a feature detector
with probabilities proportional to the average feature detector firing rates
on training data set. The LCS of these randomly generated sequences with
the template were used to fill out the distribution of LCS lengths. We then
expressed the LCS length of a test sequence with the template as a Z-score
with respect to this distribution (see Figure 10) and defined this as the
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sequence similarity measure for use in the template scheme. We summa-
rize this process with the similarity formula

sim(Stemp, Stest ) = Ztemp

(|LCS(Stemp, Stest )|
)
,

where | · | denotes a sequence length and Ztemp(·) represents the transfor-
mation to a Z-score using the template’s randomized distribution.

5.2 Recognition Scheme. Our decoding method uses the above simi-
larity measure with a template-based recognition scheme that works as fol-
lows. We created a bank of sequence templates comprising spike sequence
responses to 100 exemplars of each digit, which were randomly selected
from the clean speech of 50 male and 50 female speakers in the AURORA-2
training set. The templates are grouped into 22 sets {�k}22

k=1 corresponding
to the 11 digits and 2 speaker genders. Because speaker gender is a major
source of variability in the speech, grouping by gender gives template sets
with more homogeneous composition than would grouping by digit alone.

To recognize a test word, we first find its spike sequence and compute its
similarity score with each of the templates. Then for each template set �k,
we select its Nk best matches with the test sequence and average their sim-
ilarity scores to find a mean similarity score for the set. The set with the
highest score is taken to identify the digit. To find an optimal set of values
{Nk}22

k=1, we computed recognition rates using a set of validation data com-
prising 500 exemplars of each digit, drawn from the AURORA-2 training
set. The values that gave the best recognition rates on this validation data
were found by iteratively varying each value up and down and choosing
the changes that improved the performance. The selected values were then
applied to all subsequent recognition trials with testing data.

Due to the lack of statistical modeling in a template-based system, recog-
nition performance depends on the number of template exemplars used;
a greater number of templates covers more of the possible instantiations
of a given digit, permitting matches to be found for a fuller range of test
utterances. As shown in Figure 11, recognition rates on the task presented
here begin to plateau after the inclusion of about 50 to 100 templates per
digit. We chose to use only 100 for the sake of computational efficiency, but
inclusion of more templates could yield further small gains in performance.
We note, however, that even low numbers of templates still give robust per-
formance exceeding that of traditional ASR systems, which we attribute to
the noise robustness of our speech similarity measure.

5.3 Recognition Results. We applied our decoding scheme to the
AURORA-2 test data and obtained the results shown in Figure 12. Results
superior to the HMM decoder were obtained at all noise levels. Our re-
sults are further summarized in Figure 13. In Figure 13A, mean recognition
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Figure 11: Recognition rates from the template-based scheme improve with the
inclusion of more templates. Mean recognition rates are displayed for clean data
and for the 0 dB and −5 dB conditions, averaged over the four noise types.
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Figure 12: The template-based decoding scheme gives improved recognition
results over an HMM decoder when used with the spike sequence code. Recog-
nition rates are shown for the four noise types in AURORA-2 test set A. HMM
results are duplicated from Figure 9 for comparison.

rates are displayed for the cases shown previously in Figures 9 and 12.
As demonstrated, both the spike sequence coding and the template-based
decoding contribute significantly to our system’s robustness.
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Figure 13: Summary of speech recognition results. Recognition rates are shown
averaged over the four noise conditions. (A) Comparison of mean recognition
rates for the conditions shown in Figures 9 and 12. Both the spike sequence cod-
ing and template-based decoding contribute to the system’s noise robustness.
(B) Comparison with two benchmark systems from Gemmeke and Cranen
(2008). Our system gives improved noise robustness at low SNRs.

In Figure 13B, we compare our system’s performance to benchmark
results for isolated words from the AURORA-2 data set published in
Gemmeke and Cranen (2008). These benchmarks were obtained using
state-of-the-art HMM-based recognizers with missing data imputation, in
which noise-corrupted spectrotemporal regions in the sound are identified,
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removed, and filled in by inference from the remaining data. In these cases,
the imputation was performed either by maximum likelihood inference us-
ing a harmonicity mask (benchmark 1) or through sparse decomposition of
the remaining elements in a basis derived from clean data (benchmark 2).
As with our system, the benchmark results were obtained by training only
on clean data. Our model’s performance is similar to the benchmarks in
clean and low-noise conditions but gives a significant increase in per-
formance at 0 dB and −5 dB, with mean recognition rates of 74.7% and
48.1%, respectively, representing relative word error rate (WER) reductions
of 35.8% and 28.5%.

5.4 Effects of the Choice of Peripheral Model. While we have shown
that our encoding method contributes to the noise robustness of our com-
bined system, an additional question is to what extent our gammatone
filter-bank-based peripheral model plays a role. To address this, we ran
an additional set of experiments using an alternative, spectrogram-based
peripheral model. To obtain the spectrogram, we computed the discrete
Fourier transform of the sound waveform in 9 ms. Hamming windows at
1 ms intervals. For direct comparison with the gammatone filter bank
method, the frequency axis was converted to an identical ERB frequency
scale using triangular interpolation (Davis & Mermelstein, 1980). We ob-
served in other experiments that this nonlinear frequency scaling con-
tributed to improved recognition performance in our model (results not
shown). The absolute value of the response in each frequency channel was
square root compressed, resampled, and normalized just as in the gamma-
tone method. The remainder of the training and testing procedure was the
same as before. The resulting recognition performance was nearly identical
to that obtained using the gammatone filter bank, except for a slight de-
crease in the noise-averaged recognition rates at low SNRs (0.9% decrease
at 0 dB: 3.1% at −5 dB). We speculate that this small difference in perfor-
mance may result from the gammatone filter bank’s varied bandwidths,
which permit better resolution of fine spectral patterns at low frequencies
and sharp temporal modulations at high frequencies.

6 Discussion

Our aim in this work was to use biologically inspired auditory spike encod-
ing to perform robust ASR. Our system achieved recognition performance
exceeding that of a robust HMM-based system on a small-vocabulary,
isolated-word task at low SNRs. We obtained these results using a model
trained only on clean speech, offering a major advantage over statistical
approaches to ASR, which typically must be trained in the specific acoustic
environment of the end application (Hirsch & Pearce, 2000).

We chose the benchmarks in Figure 13 because they were obtained by a
state-of-the-art system on an isolated word task identical to the one used
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here. However, other studies that performed continuous speech recognition
on the AURORA-2 data can provide further context for our results. Other
state-of-the-art systems that, like ours, were trained only on clean data
achieved up to 67% recognition at 0 dB and 35% at −5 dB (Barker, Cooke,
& Green, 2001; Droppo, Deng, & Acero, 2001; Deng, Droppo, & Acero,
2005; Hirsch & Pearce, 2006), while those trained on data in the same noise
conditions as the test data achieved up to 79% at 0 dB and 46% at −5 dB
(Hirsch & Pearce, 2006; Chen & Bilmes, 2007; Kalinli, Seltzer, Droppo, &
Acero, 2010; Seltzer & Acero, 2011). Our isolated digit results cannot be
directly compared to these, but it is clear that the recognition rates that
our system attained are quite good considering the severity of the noise
conditions.

6.1 Relationship to Previous ASR Systems. As described in section 1,
our system’s use of feature detectors to represent speech is reminiscent
of connectionist ASR systems that use ANNs in their front ends. These
systems typically use the ANNs to produce additional frame-based features
for input to an HMM decoder (tandem systems) or to directly compute
the posterior probabilities of HMM states for each speech frame (hybrid
systems). Although most research on these systems has focused on large
vocabulary speech recognition tasks, not on noise robustness, one DBN-
based tandem system yielded reasonably good results (50% at 0 dB, 25% at
−5 dB) on the AURORA-2 connected digits task (Vinyals & Ravuri, 2011).

Our encoding scheme resembles these connectionist systems in its use
of discriminatively trained artificial neurons, but a number of significant
differences also distinguish our approach. First, our representation is not
frame based; acoustic observations are not conveyed as vector features to
the decoder at regular time intervals. Rather, the feature detector spikes
form a point-process representation of the sound, which is subsequently
converted to a sequence of discrete neuron labels corresponding to irregular
time intervals. This has the advantage of allowing partial segregation of the
representation of signal and noise. As discussed in sections 4 and 5, noise
largely has the effect of adding extraneous spikes to the code, while leaving
the representation of the speech relatively intact. Our decoding approach
exploits this fact by identifying the spike sub-sequence that most closely
resembles clean speech.

Second, in connectionist systems, the ANNs are discriminatively trained
to produce HMM state alignment probabilities, while our feature detector
neurons are trained to discriminate a single spectrotemporal pattern from
a large collection of other sounds. This relatively straightforward binary
classification task permits training with a simple linear SVM in our system,
in contrast to the computationally intensive algorithms used, for example,
in DBN training.

Third, our decoder differs from HMM and other statistically based de-
coders, and even from other template-based decoders, in that only selected
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elements in the acoustic sequence are utilized in scoring a test utterance.
In this sense, our system can be seen as providing a means of frame se-
lection (Zhuang, Rui, Huang, & Mehrotra, 1998; Cooke, Green, Josifovski,
& Vizinho, 2001), but with the selection built directly into the decoding
process rather than requiring an additional stage of front-end processing.
The selection of this subset of acoustic observations using the LCS is en-
abled by the discrete nature of the spike sequence code and allows recog-
nition of speech even when statistical models would match the noisy data
poorly.

Our treatment of the feature detector spike code as a sequence of dis-
crete neuron labels is reminiscent of classic ASR studies in which vector
quantization (VQ) was used to convert cepstral coefficients into sequences
of discrete dictionary element labels (Jelinek, 1997). Accordingly, our HMM
model training for the spike sequence code was procedurally similar to that
used in VQ studies. However, the non-frame-based nature of the code dis-
tinguishes our approach. Our system’s representation of speech in terms
of the sequential appearance of features is also similar in spirit to other
studies that represented speech as sequences of psychophysically relevant
landmarks such as consonant-vowel transitions and points of highest sonor-
ity (Stevens, 2002). In our scheme, however, we make no attempt to parse
out these differing types of landmarks, instead relying on the SVM training
algorithm to select out the relevant discriminative features. ASR systems us-
ing detection of phonetic attributes (Bromberg et al., 2007) or whole words
(Jansen & Niyogi, 2010) have also been explored previously, and in the latter
case they gave modest gains in noise robustness.

6.2 Comparison of Decoding Methods. The gains in performance
seen in our system were attributable in part to our novel template-based de-
coding method using the LCS. HMMs are the dominant decoding technique
in ASR, but they have a number of known weaknesses that have inspired
a search for alternative methods (Bourlard, Hermansky, & Morgan, 1996;
Ostendorf, 1999; Deng & Huang, 2004). The past few years have seen a resur-
gence of interest in template-based techniques, particularly since advances
in computing power have made them more viable for use on large data
sets. A number of studies have revisited the classical template-based ASR
method of dynamic time warping (DTW), in which a dynamic program-
ming algorithm is used to compute the similarity of frame-based speech
representations (Bridle et al., 1983). Our approach is similar to DTW in its
template-based perspective and in its use of dynamic programming to com-
pute the LCS, but significant differences exist as well. DTW has some of the
same robustness problems as statistical methods, in that frame-based speech
observations in noisy conditions may not match the stored templates any
better than they would match a statistical model. By contrast, our system
was designed to quantify the match of spike sequences to sequence tem-
plates in spite of arbitrary noise corruptions.
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It is worthwhile to consider the formal similarities of the LCS algorithm
with DTW, and also with the Viterbi algorithm, which is responsible for
aligning speech frames with HMM states in HMM-based decoders (Rabiner
& Juang, 1993). All three of these algorithms use dynamic programming to
perform sequence alignment, but they differ in their alignment objectives
and their choice of constraints. In DTW as in most other classical HMM-
based methods, speech is represented as a sequence of frame-based vector
features. Test utterances are compared directly to stored speech exemplars,
in this case using a distance measure based on the pairwise alignment of
frames. The dynamic programming objective is to minimize the sum of
pairwise local distances between the speech frames, subject to some choice
of constraints on the permissible degree of time warping.

Viterbi alignment operates similar to DTW, but with each speech frame
aligned with an HMM state rather than a template frame. Historically, the
shift from DTW to HMM-based systems held the advantage, in part, that
a single HMM could serve as a “prototype” taking the place of a large
number of templates. In the Viterbi algorithm, the alignment objective is
formulated statistically, with state emission probabilities taking the place of
DTW’s local distance measure and state transition probabilities taking the
place of the alignment constraints (De Wachter et al., 2007).

By contrast with these methods, the LCS algorithm operates exclusively
on sequences of discrete symbols. The objective is to maximize the number
of aligned symbols between two sequences. As such, it can be seen as a
discrete version of the DTW algorithm where the local distance measure
has been replaced by a binary local similarity measure—1 for a match
between symbols, 0 for a nonmatch—which is to be maximized, rather than
minimized, by the algorithm. The lack of a penalty for nonmatches is a
key difference with the other methods. It effectively allows an unlimited
amount of symbol skipping in the testing and template sequences, which is
incompatible with both HMM systems, in which each speech frame must be
assigned to exactly one HMM state, and DTW systems, in which typically
at most one frame in the template sequence can be contiguously skipped
(De Wachter et al., 2007). In our system, the allowance of nonmatches is
essential in enabling recognition of heavily noise-corrupted sequences.

A further difference between our system and DTW or Viterbi is the
normalization of the LCS score with respect to a distribution compiled from
randomly generated spike sequences (see section 5). This is necessitated
in part by the variable rate of spike generation by the feature detectors,
which yields a wider array of template lengths than does a frame-based
representation scheme.

An interesting question for further research is whether a more principled,
prototype-based system in the spirit of an HMM could be constructed that
preserves the benefits of our LCS-based decoding scheme. A key strength
of our method is that it avoids explicit noise modeling, instead selecting
out portions of the spike sequence code that together form a good match
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for the templates. As such, a purely generative model such as an HMM
would seem to be incompatible with our approach. Rather, a more heuristic
model that captures the statistics of clean speech but does not penalize
nonmatches with test data might be capable of reproducing the success
of our template-based system. For our purposes here, we consider that
both the general arguments in favor of a template-based approach and our
system’s effectiveness in the AURORA-2 task recommend our system as a
viable alternative to HMMs.

6.3 Biological Significance. A major goal of theoretical neuroscience is
to understand the coding principles underlying the brain’s processing of
sensory signals. Of particular interest is how sensory representations are
specialized to process behaviorally relevant natural stimuli such as speech.
In this context, speech recognition tasks represent a well-defined functional
framework in which to test the advantages of neural coding schemes.

One approach to coding theory that has received significant attention is
that of sparse coding, in which representations are adapted to natural stim-
uli in a way that minimizes the activity of a neural population (Olshausen
& Field, 2004). Sparse auditory codes that are adapted to speech have been
found to predict some receptive field properties of auditory neurons (Smith
& Lewicki, 2006; Klein et al., 2003; Carlson et al., 2012). Recently an alterna-
tive training objective based on the sustained firing of cortical neurons was
also proposed and produced good matches to physiological data (Carlin
& Elhilali, 2013). These methods have been explored in the context of sev-
eral speech recognition tasks and in some cases gave gains in performance
(Kwon & Lee, 2004; Rufiner et al., 2007; Smit & Barnard, 2009; Sivaram et al.,
2010; Carlin, Patil, Nemala, & Elhilali, 2012).

Our encoding method based on a discriminative training objective repre-
sents yet another alternative approach to the specialization of neural codes
to speech. The feature detectors in our system produce responses that are
temporally sparse, but here this behavior is a by-product of their selectiv-
ity and not an explicit training objective. Rather, the discriminative ability
of the neurons is designed to yield noise-robust representations, the for-
mation of which has been proposed as a major goal of auditory coding
(Griffiths & Warren, 2004; Nahum, Nelken, & Ahissar, 2008). The formation
of robust auditory codes has been explored to some extent experimentally
(Las et al., 2005; Bar-Yosef & Nelken, 2007; Moore et al., 2013), but the
theoretical principles underlying these codes have not been fully deter-
mined. Noise-robust recognition tasks such as the one used here can drive
the development of new encoding schemes and enable evaluation of their
effectiveness.

The STRFs computed for our feature detector neurons can help iden-
tify possible relationships between our model and physiological measure-
ments in the auditory pathway. As discussed in section 3, the complex
modulation structures seen in our STRFs putatively locate these neurons in
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auditory cortex rather than in lower auditory areas, where simpler receptive
field structures are usually observed. In particular, some of our STRFs dis-
play strong spectral modulations that, in addition to resembling the formant
structure of speech, also resemble the STRFs of noise-invariant neurons re-
cently observed in an avian secondary auditory cortical area (Moore et al.,
2013).

The feature detectors in our system were implemented using an artificial
neuron model based on weighted summation and thresholded peak search.
This model was chosen because it was a minimally complex spike produc-
tion scheme for which a well-known discriminative training method, SVM,
could be used. The inclusion of delayed copies of the AN response to the
feature detectors enables a linear summation over time and frequency that
is similar to that performed in an STRF model. However, assignment of
spikes to peaks in the summation response is an additional nonlinearity
not accounted for by a STRF. While not strictly biological, this peak-finding
element is essential for maintaining the approximate timing of spikes under
changes to the overall level of the summation response in noise. Determin-
ing the relationship of our artificial neuron model to the dynamics of real
cortical neurons is an additional problem that we did not explore here.

Other recent biologically motivated ASR studies (Loiselle et al., 2005;
Verstraeten et al., 2005; Gütig & Sompolinsky, 2009) have used simpler spike
encoding schemes than the one we have while focusing efforts on network
decoding methods suited to spike representations. In this work, we did not
attempt a network implementation of our decoding scheme, but we were
motivated by approaches to spike decoding that operate on sequences of
sensory spikes (Loiselle et al., 2005; Jin, 2004, 2008). In particular, a neu-
ral network using dendritic processing has been presented with dynamics
equivalent to a finite state automaton (FSA) (Jin, 2008), which is a powerful
general model for the processing of symbolic languages (Martin & Jurafsky,
2000). FSA networks can in principle be trained to recognize large classes
of symbolic sequences and may provide a way forward for implementing
the template recognition scheme used here in terms of episodic memory in
a biologically realistic network. The combination of robust acoustic coding
with such powerful sequence-based processing schemes could yield a uni-
fied understanding of humans’ superior speech recognition performance
and is a subject for future work.

7 Conclusion

We presented a template-based ASR system using biologically inspired
acoustic coding that achieves highly robust performance on an isolated digit
recognition task. Future work will evaluate the system’s performance on
larger data sets and investigate network implementations of the sequence
recognition paradigm. Our work provides a framework for understanding
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the selective tuning of auditory neurons and an avenue for further research
on the use of neural coding in robust ASR.
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