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Spiking neural network for recognizing spatiotemporal sequences of spikes
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Sensory neurons in many brain areas spike with precise timing to stimuli with temporal structures, and
encode temporally complex stimuli into spatiotemporal spikes. How the downstream neurons read out such
neural code is an important unsolved problem. In this paper, we describe a decoding scheme using a spiking
recurrent neural network. The network consists of excitatory neurons that form a synfire chain, and two
globally inhibitory interneurons of different types that provide delayed feedforward and fast feedback inhibi-
tion, respectively. The network signals recognition of a specific spatiotemporal sequence when the last exci-
tatory neuron down the synfire chain spikes, which happens if and only if that sequence was present in the
input spike stream. The recognition scheme is invariant to variations in the intervals between input spikes
within some range. The computation of the network can be mapped into that of a finite state machine. Our
network provides a simple way to decode spatiotemporal spikes with diverse types of neurons.

DOI: 10.1103/PhysRevE.69.021905 PACS nuner87.19.La, 87.18.Hf, 84.35.i, 07.05.Mh

I. INTRODUCTION The way that our network recognizes the patterns of the
input spatiotemporal spikes is different from most of previ-
Sensory neurons in many brain areas spike with preciseus biologically plausible proposals, which rely on detecting
timing to stimuli with temporal structures. Examples includethe time intervals between input spikes. These include inter-
auditory neurons in cochlear ganglion and auditory brairhal clocks[13], delay lines[14,15, oscillators[16], short
stem nucle{1], and ganglion cells in reting2]. Temporally ~ term synaptic plasticitf17], and distributed decaying pro-
complex stimuli can thus drive different sensory neurons tecesses coupled with transient synchrddgg]. Rather than
spike at different times, forming a spatiotemporal coding ofdetecting time intervals, the excitatory neurons in our net-
the stimuli. Some temporally stable stimuli are also transWwork detect the spatiotemporal orders of the input spikes.
formed into spatiotemporal codes. For instance, differenthis detecting scheme is insensitive to changes of the input
odors evolve distinctive spatiotemporal spikes of the projecinterspike intervals within a range. This invariance is a useful
tion cells in the locust antennal lo&]. Over the years, feature for processing sensory stimuli such as speech, which
many aspects of encoding with spatiotemporal spikes havéan have variable timing between different parts. The length
been explored4—6]. However, relatively few biologically ~Of the recognized sequence is limited only by the number of
plausible proposals exist for reading out such spike codes.neurons in the synfire chain. This is markedly different from
In this paper, we describe a decoding scheme using §ome of the previous proposals, for which the maximum
spiking neural network. The network consists of a synfirelength of the recognized spike patterns is fundamentally lim-
chain of excitatory neurong7], and two globally inhibitory  ited by the time scales of the underlying biophysical pro-
interneurons of different types that provide delayed feedforcesse$17,18.
ward and fast feedback inhibition, respectively. The network
signals recognition of a specific spatiotemporal spike se- Il. RESULTS
guence when the last excitatory neuron down the synfire
chain spikes, which happens if and only if that sequence was
present in the input spike stream. The recognition is invariant The network consists of a number of excitatory neurons,
to variations in the intervals between input spikes withinlabeled N1, N2, etc., and two inhibitory neurons labeled 11
some range. The sequence recognizing dynamics of the nednd 12 (see Fig. 1 The excitatory neurons form a synfire
work is characterized by transitions between up states anchain[7], with each neuron in the chain sending an excita-
down states of neuronal membrane potentials, and can kery connection to its immediate next neighbor down the
understood in terms of finite state machine, which is a pow¢hain. Each excitatory neuron receives excitatory spike in-
erful conceptual model widely used for understanding digitalputs from afferents coming from different sensory neurons.
computerd 8], natural language processif@], and artificial ~ The input afferent to N1 is labeled 1, and that to N2 labeled
neural network$10]. Our network is also a simple example 2, etc. All excitatory neurons excite interneuron I1, and 11
of biologically useful computations arising from the diversity sends back inhibition to them. 11 provides a global feedback
of neuronal properties and the specificity of the synaptic orinhibition to the excitatory neurons. Interneuron 12 is excited
ganizations for the inhibitory interneurons observed in ex-by all input afferents, and sends inhibition to all excitatory
periments11,12. neurons. The excitatory neurons connect back to 12. 11 also
sends an inhibitory connection to 12. 12 provides a delayed
feedforward inhibition to the excitatory neurons, and is regu-
*Electronic address: djin@mit.edu lated by I1.

A. The network structure and the neuron properties
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FIG. 2. Spiking properties of the neurons under constant current
injections. Three columns of figures are shown. For each column,
FIG. 1. Structure of the network. The excitatory neurons arethe upper figure is the voltage trace of the neuron with high current
indicated with white circles labeled N1, N2, etc. The two inhibitory injection, and the middle one is that with low but suprathreshold
neurons are indicated with gray circles labeled 11 and I12. The inpugurrent injection. The relative magnitudes of the high and low in-
afferents are labeled 1, 2, etc. The excitatory synapses are indicaté&Ftion currents are shown in the bottom figui®. Excitatory neu-
with open circles ending the connection lines, and the inhibitoryron. (b) Interneuron 11(c) Interneuron 12.
synapses are indicated with solid circles. The excitatory neurons
form a synfire chain, with each neuron exciting its immediate nextoroduce a regular spike train. Compared to 11, the latency
neighbor down the chain. Interneuron I1 is excited by the excitatoryto first spike from the resting state can be quite long for this
neurons, and sends back inhibition to them, thus proving a feedbadakeuron. Details of the neuron models are given in Appendix
inhibition. Interneuron 12 is excited by all input afferents, and in- A.
hibits all excitatory neurons. The excitatory neurons send back ex- The responses of the interneurons to suprathreshold exci-
citations to 12. 12 is also inhibited by 11. 12 provides a feedforward tatory spike inputs are displayed in Fig. 3. These properties
inhibition to the excitatory neurons, and is regulated by I1. are very important for the operation of our network. We re-
quire that the interneurons spike once for every excitatory

The spiking properties of the neurons under injection ofgjike input. With the time constant small and the conduc-
constant currents are shown in Fig. 2. We model the excita-

tory neurons as leaky integrate and fire neurons with finite
refractory period. Injection of a suprathreshold constant cur- |
rent causes an excitatory neuron to spike regularly. We 1
model interneuron 11 as integrate and fire neuron with
Kv3.1-Kv3.2 and Kv1 channels, which are two types of K
channels. The model we use is suggested by Lewis and Gel |
stner[19], and is a modified version of a conductance based |
model proposed by Erisiet al. [20] for the fast spiking in- !
hibitory neurons in the mice neocortex. The modified model !
1
1
|
|
[

1 2 3 4

replaces the spike generation process in the original mode 1,
with simple resets of the membrane potential and the con-
ductance parameters, followed by a refractory period. Other-
wise the modified model is identical to the original one. !
There is a range of injected constant current, in which the . . ' . !
neuron spikes only once with a small latency. When the mag-
nitude of the constant current exceeds the upper limit of this

range, the neuron spikes a regular spike train. The latency t 0
the first spike from the resting state is small. We model in-
terneuron |2 as quadratIC Integl’ate a.nd f|re neuron W|th a FIG. 3. Sp|k|ng properties of the interneurons under Supra_
finite refractory period. The model follows that of Hansel threshold excitatory spike inputs. Top: the membrane potential trace
and Mato[21], who tuned the parameters to match the prop-of interneuron 11. Middle: the membrane potential trace of interneu-
erties of a conductance based model of hippocampal inhibiron 12. Bottom: the times of the spike inputs. The interneurons spike
tory neurons proposed by Wang and Buzg&#]. Injection  once for every spike input. The latency of I1 is much smaller than
of a suprathreshold constant current causes the neuron taat of 12.

20 40 60 80 100 (msec)
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tance large for the excitatory synapses, both neurons caexcitation from N1, which balances the effect of the inhibi-

satisfy this requirement. However, because of the differention to keep the membrane potential of 12 subthreshold but
membrane properties, the spike latency is different. |1 spikesot hyperpolarized. Without the balancing, the responsive-
with a minimal delay, whereas [2 spikes with much longerness of 12 to spike inputs can be compromised.

delay. With our models of the interneurons, the latency of the After the input to N1, there are three possibilities for the

feedback inhibition through I1 can be less than 1 msec, andext input.

the delay of the feedforward inhibition through 12 can be in  (a) If the input is again 1, N1 spikes again, and N2 stays

the range from 5 msec to 15 msec. in the up state without spiking.
(b) If the input is 2, N2 spikes since it is in the up state.
B. Spike sequence recognition The spike from N2 induces spiking of 11, which inhibits all

neurons in the chain as well as 12, suppressing the feedfor-

The spatiotemporal input spikes are represented as spikg 4 inhibition. N2 returns to the down state because of the

sequences with the interspike intervals assumed to be in bgaset, the refractory period, and the feedback inhibition. N3
tweenT iy andTrax. An example is 248...,which means  goes to the up state.

that afferent 2 carries a spike first, followed by afferents 4, 3, (C) If the input is neither 1 nor 2, no neuron in the chain

1, etc. The input spikes drive the spiking of the neurons ingpikes since N2 is the only one in the up state. The delayed
the network. In some parameter regimes, spikes in an excfeedforward inhibition is not suppressed, since 11 does not
tatory neuron indicate the recognition of a specific input sespike. The feedforward inhibition causes N2 to return to the
quence. N4 spikes if and only if there is a sequence 1234 idown state. Thus, all neurons are in the down states again,
the input stream, N3 if and only if 123, and N2 if and only if and the network returns to the initial state. In sum, N2 spikes
12. In other words, N4 recognizes input spike sequencd and only if the input sequence is 12.
1234, N3 recognizes 123, and N2 recognizes 12. N1 is a We can extend the above scenario to N3 and show that N3
special neuron; it spikes once every time it gets an inpuspikes if and only if the input sequence is 123. A different
spike. We describe the parameter regimes in the followingole of the feedback inhibition from I1 is introduced. Sup-
section. In this section, we describe how the network operpose that the input is 1231. Before the last input at 1, N4 is
ates to achieve such selectivity. in the up state because N3 just spiked. But the input 1 causes
Except N1, each excitatory neuron has two states at thhl1 to spike and N2 to go to the up state. N4 receives the
times of the input spikes, the down state and the up state. THeedback inhibition via 11, and returns to the down state. This
down state is characterized by a low membrane potential anensures that input sequence such as 12314 will not make N4
a net negative or zero synaptic current. An input spike to apike. The same scenario applies to all other neurons in the
neuron in the down state cannot make it spike. This is mainlehain: neurom spikes if and only if the spike sequence is
due to the spiking of interneuron I2: The powerful feedfor-123 .. .n.
ward inhibition checks the depolarizing action of the input In this paper, we only consider the case of each excitatory
spike before the membrane potential could reach the spikeeuron getting inputs from different sensory neurons. How-
threshold from the down state. The feedforward inhibitionever, this restriction can be lifted by extending the role of the
further returns the neuron to the down state by the time ofeedback inhibition. Suppose that two neurons are getting the
the next spike input. Hence, input sequences such as 333%ame inputs, with one in the up state and the other in the
cannot cause N3 to spike from the down state. Initially, alldown state. The neuron in the up state will spike first because
excitatory neurons are in the down states, and any input sét has higher membrane potential. This sends the feedback
guence without 1 in it will not be able to make any of the inhibition to the other neuron, causing it to remain in the
excitatory neurons spike. In this case, each input spike depalown state even though it also receives an excitatory input.
larizes for short duration the membrane potential of the neuThus, the previous scenario can be still preserved.
ron that receives the input. 12 spikes in response to each Several features of the network are crucial for the opera-
input spike, whereas |11 does not spike at all. tion of the network. The feedforward inhibition is used for
The excitatory neuron can also be in the up state, which ipreventing the out-of-order input sequences from driving
characterized by a high membrane potential. Upon receivingpikes in the excitatory neurons. The feedback inhibition pre-
an input spike, the neuron in the up state can spike before theents the excitatory neurons from spiking immediately after
arrival of the feedforward inhibition from 12. An excitatory receiving spikes from upstream neurons; it returns the neu-
neuron goes from the down state to the up state if it receiveson that just spiked to the down state; finally, it makes every
a spike from its immediate neighbor preceding it in the syn-excitatory neuron downstream from N2 to return from the up
fire chain. state to the down state when N1 spikes. The refractory period
An input to N1 makes it spike once. The spike from N1 of the neurons is important for ensuring that the most re-
causes N2 to jump to the up state; it also induces I1 to spikeently active neuron will not spike multiple times because of
before 12 could. The spike from I1 inhibits all neurons in thethe residuals of the excitatory conductance. The inhibition
chain, and keeps N2 from spiking before the next input; itfrom I1 to I2 is crucial for keeping the up state since it shuts
also suppresses the spiking of 12, abolishing the feedforwardown the powerful feedforward inhibition. For all these to
inhibition that would have followed the spike input. This work, the delay of the feedforward inhibition must be longer
suppression is important for keeping N2 in the up state at théhan the typical delay of the spiking of the excitatory neurons
next input. Besides the inhibition from 11, 12 also receives anplus the delay of the feedback inhibition. In addition, the
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minimum time interval between the input spikes must be 0 400 800 (msec)
longer than the delay of the feedforward inhibition. The syn- N8 |
fire chain of the excitatory neurons is the main structure thatN7 |
ensures a sequential spiking of neurons when the recognizens |
input sequence is present. N5 |
_ N4 |
C. Tuning the parameters N3 |
In order for the network to operate as proposed, the cony, | |
nection strength of the synapses on the excitatory neuron, | ] | |
cannot be arbitrary. The main parameters that need to b
tuned are the feedforward excitatory conductamke the ] T FEEEEET |
lateral excitatory conductand®,, the delayed feedforward 12 HH ’ ’ | ‘ ’ | ’ ‘ | ’ ’ ’ ’ ’
inhibitory conductanc&;, and the feedback inhibitory con- wpt || ||| | [ ||| |II |} TEEEE T [T L)) (]
ductanceG,. Related parameters are the time constganof
the excitatory synapses, the time constgruf the inhibitory
synapses, the membrane time constardf the excitatory FIG. 4. Spike sequence recognition. The spike raster of neurons
neurons, the range\(,in.Amay Of the delay of the feedfor- N1 to N8 and the interneurons 11 and 12 is plotted. The input spike
ward inhibition, the range &uin,domay Of the delay of the sequence is indicated in the bottom row, and the input spike times
feedback inhibition, the maximum delay to spikeof the are indicated with the vertical lines in the row next to the bottom
excitatory neurons, and the refractory timg of the excita-  row. N8 spikes if and only if the input stream contains a subse-
tory neurons. The feedforward excitatory conductaBgeo ~ duence 12345678, as highlighted with the gray rectangle in the
N1 is different from that to other excitatory neurons, sincefigure; therefore, N8 recognizes this particular subsequence.
N1 is special in the sense that it spikes to every input. The
reversal potential of the excitatory synapses is 0 mV. Th%o

relative _relatlonsh|p of the po_tent|als E!<I.‘.<R<®<O' effect of the conductance. Too lar@g causes the inhibitory

HereE, is the reversal potential of the inhibitory synapses, ff i b d . iK d h

and L, ®, andR are the resting membrane potential the® ect to linger beyond one input spike, and suppresses the
v ' neurons from transiting to the up states. SimilaBy, has an

spike thresho_ld, and the reset potential of the excitatory neul]pper bound because of the residual effects. Another upper
rons, respectively.

The feedforward excitation conductan@e is bounded in bound forG, is determined by the requirement that the com-

L . bined effect ofG, andG, should leave the neuron in the up
a finite range. It cannot be too large, otherwise the sequencg ) .
State. Too larg&s, cannot achieve this.

selectivity is lost since the neuron can spike even from thé The lower boundT .. of the time intervals of the inout
down state before the delayed feedback inhibition could preé ikes must be lar e;nln%an the maxim of the delaps
vent it from spiking. The conductanc@,; cannot be too P g Whax y

small; otherwise the input spike cannot cause the neuron t§; :ﬂg ;iigfzrvxzrdticl:ntri]rlr?:etlzghgzg';ssC;Jhses?](ll?rifr?sreﬁeizcggiig
spike even from the up state. ynap !

The lateral excitatory conductand®, is also bounded time to make transitions between the up and down states.

within an interval. The conductanég, cannot be too large; Thergfore,Tmi_n shoulg be sufficiently Iarger.thaﬁmax. In
otherwise the spiking of an excitatory neuron will cause arprac_ﬂce, Sett'nngi”_.Amax+2.T' works quite well. The
immediate cascade of spiking of the neurons in the chailjinax'mlm.]T.maX of the input spike intervals cannot b? too
even without the spike inputs, since the feedback inhibitio arge. This |s_because the natural decay of the neuron’s mem-
could not react fast enough to prevent this cascade. The co rane potential degrades _the up states to the down states if
ductanceG, cannot be too small; otherwise neurons in the ong intervals are present in the input sequence. In this case,
chain cannot jump to the up states when the upstream neﬁéﬁ?gne:t sequence may not be able o spike the relevant
rons spike. !

The delayed feedforward inhibitory conductar@g must The above description of the bounds of the synaptic con-

be large enough to prevent the neuron in the down state frorﬂUCt?nce can be_put_into mathematically rigorc_>us fc_)rms. The
jumping to the up state. It should also be large enough ¢ etails of the derivations and the results are given in Appen-

return a neuron in the up state to the down state when th x B.
next input spike is not to the neuron in the up state. The
feedback inhibitory conductand8, is also bounded from

below. It must be large enough to counteract the excitatory To illustrate the network performance, we show a simula-
effect of G, to ensure that the neuron receiving the lateraltion result in Fig. 4. The network consists of eight excitatory
excitation does not spike immediately. It also must be largeeurons. The excitatory and inhibitory synapses on the exci-
enough to make the neuron just spiked to return to the dowtatory neurons have time constants of 3 msec. The lower
state. Finally, it should be large enough to return any neuroiimit of the delay of the feedforward inhibition is 5 msec,
in the up state, if it is not N2, to the down state when Nland the upper limit is 7 msec. The membrane time constant
spikes. of the excitatory neurons is 20 msec. The lower limit of the

Seq 1117455 3371112221 23456 788 8835745618

The inhibitory conductanc&; and G, also have upper
unds. The upper bound &f; is mainly due to the residual

D. Performance of the network
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input spike time intervals is 13 msec, and the upper limit is
32 msec. The values of the synaptic conductanceGyre
=2.4,G,=4.8,G3=20.2,G,=22.8,Gy=4.4, in the unit
of the leak conductance of the excitatory neurons. Other
relevant parameters ar&=—-75mV, L=-70mV, R
=—64 mV, andrr=2 msec. The input spike sequences are
generated to include a subsequence running from 1 to 8, a
block of 111, a block of 888, a block of 11222, as well as two
blocks of randomly selected sequences. The time intervals
between the input spikes are selected randomly from the in- N4
terval 13 msec and 32 msec, except for 111, whose intervals
are 13 msec. As can be seen from the figure, N8 spikes only
to the subsequence 12345678. A sequential spiking of neu-
rons in the synfire chain leads to the spiking of N8. All other
subsequences fail to spike N8. Extensive simulations with N3
randomly generated input sequences confirm that the N8
spikes if and only if the subsequence 12345678 is present in
the input stream. The spiking of 11 and 12 is complementary.
When a subsequence is recognized, I1 spikes, and 12 is si- N2
lent. When the subsequence contains no recognized se-
guences, 12 spikes, and 11 is silent. These spiking properties
of the interneurons reflect their roles in shaping the sequence
recognition function of the network.
In Fig. 5, we show the membrane potentials of the exci- N1
tatory neurons in response to the spike inputs. Focus on N4
as an example. The membrane potential is in a hyperpolar-
ized state most of the time. This is because the reversal po-
tential of the inhibition is more negative than the resting
membrane potential, and the neuron receives frequent inhi- | | | | | | | | | | | | | | l
bition from I1 or 12. When the neuron gets an out-of-order
direct input, the membrane potential shows a brief depolar-
ization. In the span of the recognized input sequence, the 23442 1234514315
membrane potential stays in a depolarized stafe state FIG. 5. Dynamics of the membrane potentials of the excitatory
following the spike of N3. Subsequent direct input spikes theneurons. The bottom row of the figure shows the input spike se-
neuron, and the membrane potential returns to the hyperpauence. The vertical lines in the row above the bottom row indicate
larized state. the input spike times. The time period that contains the recognized
sequence is indicated by the gray rectangle. Input spikes to neurons
in the down states cause a short duration depolarization of the mem-
brane potentials. Input spikes to the neurons in the up states cause
The sequence recognizing dynamics of the network cagpiking of the neurons. The down states are characterized by low
be mapped into that of a finite state machine. We illustratenembrane potentials with frequent inhibitory postsynaptic poten-
this point in Fig. 6 for the case of four excitatory neurons intials, and the up state is characterized by the extended period of
the synfire chain. At the times of the spike inputs, the exci-high membrane potentials.
tatory neurons as a system can have only four possible states.
The first state is S1, in which all neurons are in the downarrowed arc starting from and returning to S2. If the input is
state (except N1, for which the distinction of the up and neither 1 nor 2, no neuron spikes, and the feedforward inhi-
down states cannot be made because it spikes for every inphition makes N2 to return to the down state. Therefore, the
at afferent 1. Any input other than 1 will not make the system returns to S1 with all neurons in the down states. This
system to leave S1, since all neurons stay in the down stateis. indicated with the arrowed arc starting from S2 and ending
This is indicated in the diagram with an arrowed arc thatat S1. Finally, if the input is 2, N2 spikes and returns to the
starts from and returns to S1. An input to 1 causes N1 ta@own state, while N3 jumps into the up state. This is a new
spike and N2 to be in the up state. All other neurons are irstate of the system, S3, with N3 as the only neuron in the up
the down states. This state of the system, S2, is characterizathte. This transition from S2 to S3 is indicated with the
with N2 as the only neuron in the up state. The transitionstraight arrow starting from S2 and ending at S3. Similarly,
from S1 to S2 is indicated with a straight line arrow startingat S3, there are three possibilities. If the input is 1, N1
from S1 and ending at S2. From S2, there are three possspikes, N2 jumps to the up state, and N3 returns to the down
bilities. If the input is 1, N1 spikes again, N2 remains in thestate because of the feedback inhibition. The system returns
up state, and all other neurons stay in the down state. In othéo S2. If the input is neither 1 nor 3, N3 returns to the down
words, the system stays in S2. This is indicated with thestate, and the system returns to S1. Input 3 makes N3 to

N5

-

E. Mapping into a finite state machine
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barrel corteX{26]. It is most likely that there are many bio-
logically plausible mechanisms for such spatiotemporal se-
lectivity. Our network provides one.

Two features of our network are noteworthy. First, the
maximum length of the recognized spike sequence equals the
number of the excitatory neurons in the chain, and can be
arbitrarily long. Thus, the duration of the recognized se-
quence is not limited by biophysical time scales of the neu-
rons such as the synaptic time constant and the membrane
time constant. This is quite different from some other mecha-

FIG. 6. The finite state machine corresponding to the dynamicé?'smS of spatlotemporal seleqthy, n WhICh biophysical
of the network with four excitatory neurons. There are four stateé'_me sca!es constrain the maximum c_Juratlon O_f the recog-
for the system of the excitatory neurons. S1 corresponds to the stafdZz€d spike pattern§l7,18. Second, time warping of the
of all neurons in the down states, S2 to that of only N2 in the upS€guence does not affect recognition. Our mechanism only
state, S3 to that of only N3 in the up state, and S4 to that of only N4€quires the correct ordering of the input spikes, not their
in the up state. The arrowed lines indicate the transitions betweefiXact timings. As long as the intervals between input spikes
the states with the spike inputs. The inputs corresponding to each€ within a specific range, which can be quite broad, recog-
transition are printed near the lines. Here a bar on a number meatiition is intact. Invariance to time warping is beneficial for
“input other than.” A special stat® is indicated as the recognizing tasks such as speech recognitjdsg].
end state, with N4 spiking. From R, the system returns to S1 with-
out any input(denoted withe). There is a unique input sequence B, Implementing a finite state machine with spiking neurons

that can lead to each of the states S2, S3, S4, and R. For example, . o . .

S4 can be reached only by input sequence 123. The spiking of N3 OUr network implements a finite state machine for spike

indicates the system has reached S4; meanwhile, it signals that tR¢dUENCE recognition. A finite state ma_‘c_h'ne processes se-

sequence 123 is recognized. quential inputs by transitions among a finite number of dis-
crete states. For some finite state machines, certain states

spike and N4 to jump to the up state. This leads to a new. &Y b_e reached if and only if a specific sequence s present
state of system, S4, with N4 as the 6nly neuron in the ud? the input stream. These states are thus selective to particu-
state. The samé chéices are there for S4, with the only diﬁ-"’.lr Input sequences. Finite state machines are conceptually
ference being that for input 4, there is no next neuron in thes'mple. but _fu_nct|ona||y powerful, and have peen used for
r%nalyzmg digital computer8] and the processing of natural

chain to jump to the up state, so N4 spikes and the syste languageq 9]. Artificial neural networks such as discrete-
returns to S1. The spiking of N4 signals the recognition of img ra?e—moael neural networks have long been mapped into
the input sequence 1234, so an end state R is added to shQw 9 pp

this fact. This end state is inserted to distinguish input 4 from'g:fe Sr:ii[ﬂgcsm?zﬁlo]hgﬁ;l nr?évt\\’ﬁgl:kzhg;\;ls ;hsag Egjlﬁgger_
other inputs that are neither 1 nor 4. These other inputs als y P piing

cause the system to return to S1, but without causing N4 t8t°0d in terms of finite state machmes.
spike. The neurons and their connectivity in our network closely

In general, there ardl states for the network withl ex- resemble structures found in various cortical areas. There are

citatory neurons in the synfire chain. One state is S1, with al e;\r/r?er:ierotr)lls eosﬂg:; mtaer?gu;?: Sinlnd;[frf]eer:rr,fugﬁgggsdIc?:‘e(r:%ztnle?(;-
neurons in the down states. In all other states, only one ney- P P

ron is in the up state. The sequence recognition is don ons[11,12. For example, there are two common types of

through transitions between these finite states with the spik't—?hlbltory interneurons in rat somatosensory neocortex, fast

: - spiking neurons and low threshold spiking neurons. Fast
Inputs. As shown in Fig. 6, the key for the sequence reCOg%.‘[>iking neurons get strong feedforward inputs from the

nition is that a unique input sequence leads to each sta alamocortical neurons, whereas low threshold spiking neu-
(except S1 Reaching each state thus signals the detection o ’ , pIKing
s rons only get weak feedforward inpuitsl]. Both types of
a specific input sequence. ; oo -
neurons reciprocally connect with high probability to regular
i DI ION spiking excitatory neurongll]. This synaptic organization
- DISCUSSIO of interneurons is quite similar to that of the two interneu-
A. Selectivity of spatiotemporal spikes rons in our network. The synfire chain structure of excitatory
N dina t ii tiot | . neurons may also be quite common in some cortical areas,
eurons responding 1o Specific spatiotemporal SEnsory Ny e the connection probability between the excitatory neu-
puts are found in various brain areas of animals. Cells in :
. : . _fons is low[11].
primate auditory cortex are selective to sound patterns with
complex temporal and spectral conte)@3]; neurons in
macaque nonprimary auditory cortex discriminate monkey
vocalizations[24]; species-specific and bird’s own songs The operation of our network relies on potent synapses
evoke strong responses in neurons of songbird forebrain arttiat can reliably induce transitions between the down and the
premotor area$25]; and specific spatiotemporal deflections up states. The resulting changes of the postsynaptic mem-
of multiple whiskers produce strong responses in cells of rabrane potentials can be as much as 15 mV, as evident in Fig.

C. Extension to more complex networks
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5. The synapses are quite strong compared to those com- ACKNOWLEDGMENTS
monly observed in cortex. A possible remedy is to use syn-
chrony. We can replace each excitatory neuron in the net;
work with a pool of interconnected excitatory neurons that
can transit collectively between the down states and the u
stateg and spike ;ynchronously from the up state;. We can APPENDIX A: MODELS OF THE NEURONS

substitute the two interneurons with two groups of'mterneg- AND THE SYNAPSES

rons that spike synchronously. We can replace the input spike

sequences with sequences of synchronized spikes from We model the excitatory neurons as leaky integrate and
groups of sensory neurons. Such spatiotemporal sequencli neurons with finite refractory time after spike. The mem-
of synchronized spikes are observed in projection neurons iRrane potential of an excitatory neuron evolves according to
the locust antennal lobé]. Synchronous spikes can induce dv

large changes of the postsynaptic potentials. Operating with —
synchrony should also make the network more robust against dt

noise. . . . .

There are other biophysically plausible ways of imple-Herer s the _mem_brane time constahtls the _respr?g mem-

. L - . brane potentialk, is reversal potential of the inhibitory syn-

menting & sequence recognizing finite state machine. O_ngpse,gE is the excitatory synaptic conductance, ands the
possibility is to substitute each of the excitatory neurons iy inisar synaptic conductance. The synaptic conductance is
our network with a group of interconnected excitatory andsc|eq with the leak conductance of the neuron. If the mem-
inhibitory neurons that supports bistable persistent activity, one potential reaches the thresh@ld the neuron spikes,
[27]. In this case, the down and up states of the neurons arg,y the membrane potential is reset to the reset potential
replaced with the quiescent and persistent states of the nefr: After spike, the membrane potential stays at the reset
ron groups. This implementation may be more relevant fofotential for a refractory periodg. In the simulations of the
sequence Selectivity in the prefrontal cortex. Other pOSSibili-paper’ we use the f0||owing values for the parameters:
ties include using synaptic and cellular mechanisms such ag=20 msec,L=—-70 mV, ®=—54 mV, R=—64 mV, E,
N-methyl-D-aspartate receptors, voltage dependent condue= —75 mV, andrr=2 msec.
tance, rebound excitation from inhibition, etc., for creating \We model interneuron 11 as a multicurrent integrate and
the up and down states. fire neuron. The model is modified from the conductance

Our simple network recognizes a single spike sequencéiased fast spiking interneuron model of Erisiral. [20],
Ultimately, such network should be embedded in more comwhich contains fast deactivating Kv3.1-Kv3.2"Kchannels.
plex networks to expand the capacity of spatiotemporal spikdhe modified neuron retains all subthreshold conductance
processing. Viewed as devices that transform input spacurrents, but replaces the spike generating process with
tiotemporal spikes to output spatiotemporal spikes, mor&imple threshold and reset mechanism. The neuron spikes if
complex spiking networks may be analyzed as finite statdlS membrane potgntial exceeds the threshold value, and the
machines. Adding noise may turn the spiking networks intgn€mbrane potential and the gating variables are reset to

Markov models or related hidden Markov models, which argfixed values after spike. The modification is proposed by
probabilistic versions of the finite state machines. Lewis and Gerstnerl9]. The following is the model used in

our simulations. The membrane potentialof the neuron
satisfies the following equation:

| thank Professor Sebastian Seung for helpful discussions
d lla Fiete for reading the manuscript. This work was sup-
Borted by Howard Hughes Medical Institute.

=L=V—-geV-g/(V-E). (A1)

D. Searching for the network in the brain

Several properties of our network can be used to find it in Cd_V_
the brain. First, the network structure is orderly. The excita- dt
tory neurons form a synfire chain, and two types of interneu- ) )
rons mediate fast feedback and delayed feedforward inhibiere C=1 uF/cn? is the membrane capacitancei
tion, respectively. Second, the spiking of the two=9.(V—E,) is the leak current with the leak conductance
interneurons is anticorrelated. Each input evokes spiking ofL=1.25uS/cnt and the resting membrane potentt]
either 11 or 12, but not both. A span of repeated spiking of 11=—70 MmV; Iy.=gnam>h(V—Eyy) is the N& current with
is complemented with a period of silence of 12, signaling theconductancey,=112.5uS/cn? and N& reversal potential
recognition of a long input spike sequen¢eee Fig. 4  Ena=74 MV; I3 =0ikin*(V—Ey) is the Kv1.3 current with
Third, the complexity of the input patterns that drive the conductancegy;=0.225uS/cnt and K" reversal potential
excitatory neurons is distributed. N1 spikes to every input tdEk=—90 MV; I3=0x3p?(V—Eg) is the Kv3.1-Kv3.2
it, while neurons further down in the synfire chain are morecurrent with conductancgy; =225 uS/cnt; g is the exci-
selective and harder to drive with random inputs. Finally, thetatory conductanceg, is the inhibitory synaptic conductance
membrane potentials of the excitatory neurdescept N1 with reversal potentiaE,= —75 mV. The gating variables
show up and down states and quick transitions betweegatisfy the equation
them. Neurons spike only at the end of up states. The neu-

;c;?lfinc;n also return to the down state from up state without <= ay(V)(1-y)— B,(V)y,y=mhnp, (A3)

—IL—Ina=lki—lks—9eV—0i(V—E)). (A2)
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with 9—09+G, (A15)
= (3020 40V)/{exi] — (V—75.5/13.5]— 1}, dg,
(A4) gt~ 9 (A16)
Bo=1.2262/expV/42.248, (A)

The excitatory and inhibitory synapses on the excitatory
neurons have time constants typically at 3 msec. The excita-
tory synapses on interneuron I1 have a time constant 2.5

_ _ _ msec, and inhibitory synapses have a time constant 1 msec.
Pn=—(0.8712-0.01N){exd —(V+51.25/5.2] 15&7) The excitatory and the inhibitory synapses on interneuron 12

have a time constant 1 msec.
an=—(0.616+0.014/)/{exd — (V+44)/2.3]— 1}, The network dynamics is simulated with fourth-order
(A8)  Runge-Kutta method with time step 0.01 msec.

an=0.0035/expV/24.188, (A6)

Bn=0.0043/exp(V+44)/34], (A9) APPENDIX B: TUNING THE PARAMETERS

1. The pulse coupling limit
ap=(95-V)/{exd —(V—-95/11.8]-1}, (Al0) ) ) o
In this section, we use thé pulse coupling limit of the
B,=0.025/expV/22.222. (A11) synaptic conductance for tuning the parameters. This limit is
sufficiently simple for analytical treatment, yet complex
The spike threshold is-30 mV, and the refractory period enough to retain the essence of the spiking dynamics. Previ-
after spike is 1.5 msec. After spike, the membrane potentiabusly, this limit was used to prove that the dynamics of a
is reset to—85 mV, and the gating variables,h,n,p are  general class of recurrent networks of leaky integrate and fire
reset to 0, 0.16, 0.88, 0.2, respectively. neurons converge to spike sequence attradifsin this
We use the quadratic integrate and fire neuron model folimit, the synaptic time constant is set to zero, but the charge
interneuron 12. We follow Hansel and Maf@1] and set the transfer at each spike is kept finite. More precisely, the syn-
parameters to match the properties of the Wang-Buszakiptic conductance is modeled as
model of fast spiking hippocampal interneurd2€]. In the
model, the membrane potential evolves according to 9e=Ge7d(t—tspikd, (B1)

dv ) 9=G7(t—tspike) - (B2)
C——=A(V-V*)*—=1.—geV—g,(V—-E)). (Al12

dt ( ) e 9eV Ol ). (AL2) Heretgpike is the spike timeGg and G, are the maximum
. . conductance of the excitatory and inhibitory synapses receiv-
Here C=0.9467uF/cnt is the membrane capacitance; the ing the spike, and is the membrane time constant. An ex-

other parameters have value¥” = —59.5462 mV, A citatory spike causes the membrane potential of the postsyn-
=0.012 875nS/enf/mV, and 1.=0.1601mA/cm* ge IS aptic neuron to jump from its initial valu¥ to

the excitatory synaptic conductaneg;is the inhibitory syn-

aptic conductance with reversal potenfia= — 75 mV. The Vi=ve Ce (B3)

spike threshold is-26.3462 mV, and the reset potential after

spike is—64.1462 mV. to
We use the “kick-and-decay” model of the synaptic con-

ductance. Upon receiving an excitatory spike, the excitatory VP=E (1—-e ®)+Ve ©. (B4)

conductance of the neuron jumps a finite valie, which is ) ) o o
the maximum conductance of the synapse that receives theiMmultaneous spikes of both inhibition and excitation cause

An inhibitory spike causes the membrane potential to jump

spike: the membrane potential to jump to
ge— e+ Ge. (A13) V' =Eef(1—-e Ce"C)+Ve O (B5)
In between spikes, the conductance decays exponentialwereEe” is the effective reversal potential, and is defined as
with time: Eeffzi_ )
dge G+ G,
Teqr | Ye (Al4) " The combined effect of an excitation and an inhibition is an

effective inhibitory synapse with the effective reversal poten-
Here 7¢ is the synaptic time constant of the excitatory syn-tial. Details of deriving the above results can be found in our
apse. Similarly, upon receiving an inhibitory spike, the in-previous work[5].
hibitory conductance of the neuron jumps a finite valie With above results on the effects of tldepulse coupling
the maximum conductance of the synapse that receives thinit, we now derive the relationships between the excitatory
spike; and in between spikes the conductance decays expfeedforward connection strengtB,, the excitatory lateral
nentially with time: connection strengtls,, the delayed feedforward inhibition
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connection strengtl®;, and the feedback inhibition strength G,E, e e _

G,. For simplicity, we neglect the delays of the feedback Va=gg 5 (1—e = =) +Ee "2 =e=>Vee mn'?
inhibition, and assume that the lateral excitation and feed- 204

back inhibition are simultaneous. The delay of the feedfor- —L(e"min/7—1), (B12)
ward inhibition is assumed to be a constant valle We

require the minimunT ,;, of the intervals of the input spikes SinceVy<®, the above inequality leads to a lower limit on

to be larger than. Gy
A neuron is in the down state if its membrane potential is
less than a critical valu¥.; it is in the up state otherwise. Gy>In| =+ e-L e~ Tmin/7| (B13)
We assume the following ordering of the voltages: (C) (C
E,<L<V.<0<0. (B7)  Together with Eq(B9), we have the upper and lower bounds

for G;. Equation(B11) requires that the ratio betweda,
To ensure that the neuron spikes only in the up state, wand G, should be in a bounded range. It is easy to see that

must have the following relation fdB;: with a ratio of G, and G, such that the effective reversal
s potential is close t®, a sufficiently large sum d&, andG,
0=V, "L (B8)  guarantees that EqB12) can be satisfied. Therefore, solu-

tions to Eqs(B11) and(B12) can always be found. Since the
effective reversal potential of the excitation and inhibition is
) less than the threshold, repeated firing of N1 will not cause

SinceL<V_. <0, we have

(B9) N2 to spike.
If a neuron other than N2 is in the up state, spiking of N1
o should bring the neuron back to the down state through the
The delayed feedforward inhibitio®; should be large feedpack inhibition. The feedback inhibition should also be
enough to accomplish two tasks: bring the neuron 10 theyong enough to ensure the neuron just spiked to return to

down state when it is excited from the down state by thene gown state upon receiving the feedback inhibition. All
feedforward excitation; bring the neuron to the down statg e requirements can be satisfie@if is large enough to

from the up state when the input sequence is out of order. IBring the membrane potential down belaty from @'
other words, the neuron should return from any state to the

down state upon receiving the feedforward inhibition. A suf- E/(1—e ) +0e Ci<V,. (B14)
ficient lower bound is found by requiring the membrane po-

tential to go belowV, from ®, since this is the most de- The above equation can be satisfied as longass large
manding case for the action of the feedforward inhibition.enough.

G <l -
1<n

This leads to the following inequality fdBs: From the up state, the membrane potential decays before
. . the next input spike can come in. If the interval between the
Ei(l-e ™3)+0e "3<V,. (B10)  input spikes is too large, the neuron can decay into the down

) o ) state before the arrival of the next input. This will lead to no
It is easy to see that a sufficiently largg should satisfy the  ogphonse even if the input sequence is correct. Therefore,
above equation. there is a maximum valug,,,, for the allowed time intervals

When a neuron in the chain spikes, the neuron immediyt the input spikes for correct operation of the network. The
ately next to it down the _syr_lfl_r_e chain receives both lateral sicient upper limit of T, is derived by requiring the
excitation and feedback inhibition. The combined effect Ofneuron starting fronE, to stay in the up state by the time

the excitation and the inhibition is such that the membraner ¢, receiving the lateral excitation and the feedback
potential of the postsynaptic neuron should be in the up statghipiion. This is expressed in the following inequality:
without going over the threshold. One necessary condition is

that the effective reversal potential of the combined excita-
tion and inhibition should be larger thaf, but smaller than Tmax<7-ln<
®. This is given by

L—Vy4
L—V,

. (B15)

G.E HereV, is the membrane potential of the neuron after receiv-

V< 9. (B11)  ing the lateral excitation and the feedback inhibition starting
G2+ Gy from E,, and is defined in Eq(B12).

_ ) , A final condition is for Gy, the feedforward excitation

Another requirement is that the membrane potential Shou'@trength to N1, which should spike following every input

jump beyondV from the lowest possible initial value, and gyiye " This is achieved by requiring that N1 can spike even
remain there for at least the minimufiy,;, of the time inter-  £.0m the lowest possible membrane potential:
vals between the input spikes. Since the membrane potential

can be no lower thaik,, the inhibitory reversal potential Eie Co>0. (B16)
[because of Eq(B7)], it is sufficient to require that the up

state can be achieved and sustainedTg, from a mem- As long as all above equations are satisfied, the network
brane potential aE, : will perform the sequence recognition task as proposed.
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These bounds are sufficient but not necessary. Tighter Ap<Tpmin- (B19)
bounds can be derived with more detailed analysis.
In practice, we find that makin@,,;,>A,+ 27, is useful for
2. The case of finite synaptic time constants getting solutions with the procedures we derive below. A

e o ) Tmin to0 close toA, tends to limit the solution space.
With finite synaptic time constants, we cannot write down “\ye start with the definition of the down state. A neuron is

the explicit analytical conditions for the parameters. Neveri, ine down state if its membrane potential is less than

theless, we can prescribe numerical procedures for findingye critical membrane potential, and the net synaptic current
the bounds of the parameters much in the same way as in thg, the neuron is negative, i.e.

6 pulse coupling case. The main impact of the finite synaptic

times is the finite rise time of the membrane potentials and V<V, (B20)
the temporal summation effects of the conductance. We no
longer assume that the lateral excitation and the feedback I4(V,0e,9))=—geV—0g,(V—E,)<0. (B21)

inhibition arrive at the postsynaptic neuron at the same time. ) )
A delayed feedback inhibition imposes an upper bound folterels is the synaptic current of the neuron. Because the
the strengthG, of the lateral excitation, since the postsynap-Synaptic time constant of the inhibition is longer than that of
tic neuron should not spike before the arrival of the inhibi-the excitation, a neuron in the down state at one time will
tion. This upper limit onG, imposes an upper limit on the Fémain in the down state without any spike inputs. The value
strengthG, of the feedback inhibition, since too large inhi- Of Ve is randomly selected from the range, ©).
bition will not be able to leave the neuron at the up state  The amount of the feedforward excitatory conductance
given that the excitation strength is upper bounded. As wé1 IS such that a neuron receiving the input spike should not
have seen in thé pulse coupling case, there is a lower limit SPike from the down state before the delayed inhibition can
for G, since it needs to be large enough to return the neuro@'ve. To calculate this, we set the initial condition at the
from the up states to the down states when N1 spikes di0st depolarized down state, apply the excitatory spike in-
return the neuron to the down states after spiked. Therefor@Ut, and integrate for the maximum delay of the feedforward
the parameter regime fa®, will be limited. There are also |nh|_b|t|on: T_he merr_]brane potential sho_uld stay subthreshold
upper limits forG, andG, coming from the constraints im- during this integration. We set the maximum of the feedfor-
posed from the temporal summations of the conductancdvard excitatory condu_ctance that satls_,ﬁes this cor_1d|t|on as
Too largeG; and G, will cause large accumulation of the G1- The most depolarized down state is the one with mem-
inhibitory conductance during the operation, which can SUIO_brane potential at the critical value, and.the .reS|duaI synaptic
press the neurons from ever going to the up states. conductanqe equal to zero. The following is the procedure
As in the & pulse coupling case, we find the sufficient fOr calculatingG, .
bounds for the parameters by considering the extreme con- Procedure I calculateG;.
ditions of the membrane potentials and the synaptic conduc- Initial conditions:
tance when neurons make transitions between the down and

the up states. With this approach, some parameter regimes V=Ve,
will be missed; however, the derivations of the conditions are e
simple. A number of parameters are useful to define. We 9e=51
define the lower and upper limits of the delay of the feedfor- 9,=0
ward inhibition asA; and A,, and those of the feedback e
inhibition asd, and §,. With a finite excitatory synaptic time Integration time:
constant and a finite membrane time constant, it takes a finite
time for the excitatory postsynaptic potential to reach the t=(0,A,).
peak. We denote the upper limit of this time to peak asVe N
assume that these delays satisfy the following inequality: Condition:

N+ 8,<Aj. (B17) V(1)<0.

In other words, the minimum of the delay of the feedforward  Iteration: _ o

inhibition must be larger than the maximum delay of the Decreases; until the condition is met.

feedback inhibition. This makes it possible for interneuron 11~ With G, determined, we calculate a lower limit of the
to prevent interneuron 12 from spiking. We also assume thétrengthG; of the feedforward inhibition. The inhibition

following relationship between the synaptic time constants: Should be strong enough to ensure a neuron in the down state
to remain in the down state before the arrival of the next

TEST|. (B19) input spike. To get this lower limit, we consider the extreme
condition of the neuron that requires a large inhibition. This
This condition simplifies some of the arguments in the deri-condition is realized for the neuron receiving the feedforward
vations of the bounds. As before, we denote the minimunexcitation from the most depolarized down state. Here, the
time between the input spikes 8%,,,. We must have a membrane potential can be at most near the threshold, and
relationship the excitatory conductance is at m@te 21/, The least
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possible time for the inhibition to do its job is the minimum Iteration:
possible time span between the feedforward inhibition and Decreasés, until the condition is met.
the next input spike. So here is the procedure for finding @nce we find the upper limit o5,, we randomly se(G,

lower limit of Gj. from 0 to this maximum allowed value. We then decide the
Procedure II: calculate a lower limit 0iG3. lower limit of G,. The feedback inhibition should be strong
Initial conditions: enough to keep N2 from spiking. This is done in the follow-
ing procedure that contains a two-step loop.
V=0, Procedure IV: calculate a lower limit ofG,.
Initial conditions:
ge=Gie M1, V=V,,
:0,
g,=Gs3. 9e
Integration time: 9=0.
Integration:
t=(0,Tmin—A>). Loop
. Step 1:ge—0e+G,. Time:t;=(0,5,).
Condition: Step 2:g/— 9, +Gg. Time: tp=(0,Trin— &~ \).
V(1) <O, Condition:

V(t1)<0,V(t,)<0.
V(Tmin—A2)<V¢, (ty) (ty)

Iteration:
Is(Tmin—A2)<0. IncreaseG, until the condition is met.
) The loop is stopped if the steps converge to a periodic orbit.
lteration: , o The neuron state at the end of step 2 after the loop converges
IncreaseG; until the condition is met. _ is the most depolarized up state at the times of the spike
Here, I(Tmin—A>) represents the residual synaptic currentn ts. This state will be useful for calculations of other lim-
at the end of the integration. its. We denote the membrane potential at this staié,ashe

We now consider the transition from the down state to theoqiqyal excitatory conductance gs,, and the residual in-
up state due to the lateral excitation and the feedback inhiﬁibitory conductance ag,;.
bitiqn. _This transition imposes an upper limit on the lateral " noirons in the up states must return to the down states if
excitation strengthG, and a lower limit on the feedback e jnnyt spikes are out of order and the delayed feedforward
inhibition strengthG,. These limits come from the require- j,ninition arrives. This gives another lower limit G. To
ment that the postsynaptic neuron does not spike because ol|cjjate this, we start with the most depolarized up state.
the lateral excitation. The condition that imposes the stront4 integration has two steps. First, the neuron state decays
gest constraints on these limits is the case of N1 repeatediy,y the most depolarized up state before the arrival of the
spiking with the smallest possible time intervals. This hap-ye|ayed inhibition. Second, the feedforward inhibition ar-

pens when the input sequence is 111.. N2should not  jyes and returns the neuron to the down state before the
spike under these repeated lateral excitations, even starting, input comes. The procedure is as follows.

from the most depolarized down state. We find the limits in p.0-aqure V: calculate a lower limit 0G5,

two steps. First, we find an upper limit &, b_y requiring Initial conditions:
that N2 does not spike from the most depolarized down state
before the arrival of the feedback inhibition. V=V,
Procedure Il : calculate an upper limit o6,.
Initial conditions: 9e=0E1,
V=Vg, 9=01-
9e=G,, Integration:
Step 1: Timet,=(0,A,).
g,=0. Step 2:9,—0;+G3. Time:t,=(0,Tin—A»).
Condition:

Integration time:
V(to=Trnin—A2) <V,
t= (0162)
Is(t2=Tmin—A2)<0.
Condition: .
Iteration:
V(1)<0O. IncreaseG; until the condition is met.
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A neuron in the up state should return to the down state if G, e (Tmin= =82+ 7R)/ 7
it is not N2 and the next input is to N1. In this case, the 9=Gge (R-o/n 4 2
transition is due to the feedback inhibition induced by the
spiking of N1. This gives a lower limit on the streng) of o
the feedback inhibition. Since the neuron in the up state is Integration time:
not N2, it must arrive at the up state from a down state.
Therefore, the most demanding situation for the feedback t=(0,Trmin= A= 7R).
inhibition is that the neuron arrived at the up state from the N
most depolarized down state. So here is the procedure for Condition:
calculating this lower limit.
Procedure VI: calculate a lower limit ofG,. V(Tmin— M= 7R) <V,
Initial conditions:

1— e_Tmin/TI

Is(Tmin— N— 7r)<O.

V=V,

Iteration:
ge=0, IncreaseG, until the condition is met.

We need one more condition for a lower limit @f, if we
9,=0 want to extend the network for recognizing sequences with

repeated inputs from the same source, for example 1234537,
in which input 3 is fed to both N3 and N6. In this case, when
N3 spikes because it is in the up state and the input is 3, N6
gets the excitatory input as wedlthis is not possible if all
excitatory neurons get spikes from different input sources

Integration:
Step 1:gg— 0+ Gs.
Time: t]_: (0,52) .

Step 2:.9,—9, + Ga. But N6 should return to the down state. This can only be
Time: t;=(0,Tmin =\ = 82+ 61). done with the feedback inhibition since the spiking of N3
Step 3:.9,—g, +Ga. blocks the delayed feedforward inhibition. We will not dis-
Time: t3=(0,Tin— A~ &2). cuss this case in detail.
Condition: The procedures II, IV, V, VI, and VII give the lower limit
of Gz andG, givenG; andG,. There are also upper limits
V(t3=Tmin—= A= 82) <V, of G; andG,. The upper limits come from the requirement
that the excitatory neurons can transit from the down state to
ls(t3=Tmin— A— 2)<0. the up state; furthermore, the neuron can spike from the up
state if it receives a spike input. There is also an upper limit
Iteration: for the time intervals between the input spikes, since a neu-
IncreaseG, until the condition is met. ron cannot stay in the up state indefinitely due to the decay-

There is yet another lower limit @8,. After an excitatory ~ ing of the membrane potential and the synaptic conductance.
neuron spikes, it must return to the down state before théarge inhibitory conductance tends to have adversary effects
arrival of the next Spike input_ This is done through the com-On this requirement, since the residuals of the inhibition con-
bined effects of the reset of the membrane potential, the reductance can be too large for the excitation to overcome. The
fractory time period, and the feedback inhibition. The mostmost demanding condition for an excitatory neuron to go to
demanding situation for the inhibition is for the case of N2.the up state is when it is in the most hyperpolarized down
Repeated spiking of N1 can cause N2 to be in the mosstate. Here the membrane potential is at the most possible
depolarized up state. The residuals of the synaptic condudegative value, which is the reversal potential of the inhibi-
tance from this up state work against the action of the feedtion. The maximum possible inhibitory residuals can also be
back inhibition after N2 spikes. A long refractory period calculated from the case of repeated feedforward inhibition
helps, since the residuals decay during the refractory perio®r feedback inhibition with minimal time intervals of the
We assume that the refractory time period is longer than th#put spikes. From this most hyperpolarized state, we calcu-
maximum de|ay of the feedback inhibition. A |arge reset 0f|ate the effect of the lateral excitation and feedback inhibi-
the membrane potential also helps to reduce the burden &pn and make sure that the neuron is in the up state. We then
the feedback inhibition. The following is the procedure tocheck if a feedforward excitation coming with input interval

calculate the limit. T can cause the neuron to spike. This procedure enables us to
Procedure VII: calculate a lower limit 0fG,. get upper limits of the feedforward inhibition, the feedback
Initial conditions: inhibition, and the time intervals of the spike inputs.
Procedure VIII : calculate upper limits 065,G,4,T.
V=R, Initial conditions:
V=E,,

e~ (Tmin— A+ 7/

ge=G,e R/"e+

]_—e_TminITE gE:O’
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max Gg,G,)e ™ (Tmin=42)/7 Iteration: '
0= e . Decrease53,G,4, and/or increas&
l1—e 'min'7 until the condition is met.
For givenG; and G,, this procedure may produce upper
) limits of G; or G, that are not larger than the lower limits
Integration: _ produced in the previous procedures, or the upper limif of
Step 1:gg—ge+ G,. Time:t;=(0,67). that is not larger thaff,;,. This means that we failed to find
Step 2:9,— 9, +Gy. Time:t,=(0,T—61). that the parameter regime for the network to operate as pro-
Step 3:gg—0ge+G;. Time:tz=(04A,). posed. We need to select né®; and G,, and start over,
Condition: until we find the parameters satisfy all the limits required

max{ V(t3)]>0, i.e., the neuron spikes during step 3. from the procedures.
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