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Spiking neural network for recognizing spatiotemporal sequences of spikes

Dezhe Z. Jin*
Howard Hughes Medical Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technolog
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~Received 16 October 2003; published 26 February 2004!

Sensory neurons in many brain areas spike with precise timing to stimuli with temporal structures, and
encode temporally complex stimuli into spatiotemporal spikes. How the downstream neurons read out such
neural code is an important unsolved problem. In this paper, we describe a decoding scheme using a spiking
recurrent neural network. The network consists of excitatory neurons that form a synfire chain, and two
globally inhibitory interneurons of different types that provide delayed feedforward and fast feedback inhibi-
tion, respectively. The network signals recognition of a specific spatiotemporal sequence when the last exci-
tatory neuron down the synfire chain spikes, which happens if and only if that sequence was present in the
input spike stream. The recognition scheme is invariant to variations in the intervals between input spikes
within some range. The computation of the network can be mapped into that of a finite state machine. Our
network provides a simple way to decode spatiotemporal spikes with diverse types of neurons.
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I. INTRODUCTION

Sensory neurons in many brain areas spike with pre
timing to stimuli with temporal structures. Examples inclu
auditory neurons in cochlear ganglion and auditory br
stem nuclei@1#, and ganglion cells in retina@2#. Temporally
complex stimuli can thus drive different sensory neurons
spike at different times, forming a spatiotemporal coding
the stimuli. Some temporally stable stimuli are also tra
formed into spatiotemporal codes. For instance, differ
odors evolve distinctive spatiotemporal spikes of the proj
tion cells in the locust antennal lobe@3#. Over the years,
many aspects of encoding with spatiotemporal spikes h
been explored@4–6#. However, relatively few biologically
plausible proposals exist for reading out such spike code

In this paper, we describe a decoding scheme usin
spiking neural network. The network consists of a synfi
chain of excitatory neurons@7#, and two globally inhibitory
interneurons of different types that provide delayed feed
ward and fast feedback inhibition, respectively. The netw
signals recognition of a specific spatiotemporal spike
quence when the last excitatory neuron down the syn
chain spikes, which happens if and only if that sequence
present in the input spike stream. The recognition is invar
to variations in the intervals between input spikes with
some range. The sequence recognizing dynamics of the
work is characterized by transitions between up states
down states of neuronal membrane potentials, and can
understood in terms of finite state machine, which is a po
erful conceptual model widely used for understanding dig
computers@8#, natural language processing@9#, and artificial
neural networks@10#. Our network is also a simple examp
of biologically useful computations arising from the divers
of neuronal properties and the specificity of the synaptic
ganizations for the inhibitory interneurons observed in
periments@11,12#.

*Electronic address: djin@mit.edu
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The way that our network recognizes the patterns of
input spatiotemporal spikes is different from most of pre
ous biologically plausible proposals, which rely on detecti
the time intervals between input spikes. These include in
nal clocks @13#, delay lines@14,15#, oscillators@16#, short
term synaptic plasticity@17#, and distributed decaying pro
cesses coupled with transient synchrony@18#. Rather than
detecting time intervals, the excitatory neurons in our n
work detect the spatiotemporal orders of the input spik
This detecting scheme is insensitive to changes of the in
interspike intervals within a range. This invariance is a use
feature for processing sensory stimuli such as speech, w
can have variable timing between different parts. The len
of the recognized sequence is limited only by the numbe
neurons in the synfire chain. This is markedly different fro
some of the previous proposals, for which the maximu
length of the recognized spike patterns is fundamentally l
ited by the time scales of the underlying biophysical p
cesses@17,18#.

II. RESULTS

A. The network structure and the neuron properties

The network consists of a number of excitatory neuro
labeled N1, N2, etc., and two inhibitory neurons labeled
and I2 ~see Fig. 1!. The excitatory neurons form a synfir
chain @7#, with each neuron in the chain sending an exci
tory connection to its immediate next neighbor down t
chain. Each excitatory neuron receives excitatory spike
puts from afferents coming from different sensory neuro
The input afferent to N1 is labeled 1, and that to N2 labe
2, etc. All excitatory neurons excite interneuron I1, and
sends back inhibition to them. I1 provides a global feedba
inhibition to the excitatory neurons. Interneuron I2 is excit
by all input afferents, and sends inhibition to all excitato
neurons. The excitatory neurons connect back to I2. I1 a
sends an inhibitory connection to I2. I2 provides a delay
feedforward inhibition to the excitatory neurons, and is reg
lated by I1.
©2004 The American Physical Society05-1
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The spiking properties of the neurons under injection
constant currents are shown in Fig. 2. We model the exc
tory neurons as leaky integrate and fire neurons with fin
refractory period. Injection of a suprathreshold constant c
rent causes an excitatory neuron to spike regularly.
model interneuron I1 as integrate and fire neuron w
Kv3.1-Kv3.2 and Kv1 channels, which are two types of K1

channels. The model we use is suggested by Lewis and
stner@19#, and is a modified version of a conductance ba
model proposed by Erisiret al. @20# for the fast spiking in-
hibitory neurons in the mice neocortex. The modified mo
replaces the spike generation process in the original m
with simple resets of the membrane potential and the c
ductance parameters, followed by a refractory period. Oth
wise the modified model is identical to the original on
There is a range of injected constant current, in which
neuron spikes only once with a small latency. When the m
nitude of the constant current exceeds the upper limit of
range, the neuron spikes a regular spike train. The latenc
the first spike from the resting state is small. We model
terneuron I2 as quadratic integrate and fire neuron wit
finite refractory period. The model follows that of Hans
and Mato@21#, who tuned the parameters to match the pro
erties of a conductance based model of hippocampal inh
tory neurons proposed by Wang and Buzsaki@22#. Injection
of a suprathreshold constant current causes the neuro

FIG. 1. Structure of the network. The excitatory neurons
indicated with white circles labeled N1, N2, etc. The two inhibito
neurons are indicated with gray circles labeled I1 and I2. The in
afferents are labeled 1, 2, etc. The excitatory synapses are indi
with open circles ending the connection lines, and the inhibit
synapses are indicated with solid circles. The excitatory neur
form a synfire chain, with each neuron exciting its immediate n
neighbor down the chain. Interneuron I1 is excited by the excitat
neurons, and sends back inhibition to them, thus proving a feed
inhibition. Interneuron I2 is excited by all input afferents, and
hibits all excitatory neurons. The excitatory neurons send back
citations to I2. I2 is also inhibited by I1. I2 provides a feedforwa
inhibition to the excitatory neurons, and is regulated by I1.
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produce a regular spike train. Compared to I1, the late
to first spike from the resting state can be quite long for t
neuron. Details of the neuron models are given in Appen
A.

The responses of the interneurons to suprathreshold e
tatory spike inputs are displayed in Fig. 3. These proper
are very important for the operation of our network. We r
quire that the interneurons spike once for every excitat
spike input. With the time constant small and the cond
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FIG. 2. Spiking properties of the neurons under constant cur
injections. Three columns of figures are shown. For each colu
the upper figure is the voltage trace of the neuron with high curr
injection, and the middle one is that with low but suprathresh
current injection. The relative magnitudes of the high and low
jection currents are shown in the bottom figure.~a! Excitatory neu-
ron. ~b! Interneuron I1.~c! Interneuron I2.

FIG. 3. Spiking properties of the interneurons under sup
threshold excitatory spike inputs. Top: the membrane potential tr
of interneuron I1. Middle: the membrane potential trace of intern
ron I2. Bottom: the times of the spike inputs. The interneurons sp
once for every spike input. The latency of I1 is much smaller th
that of I2.
5-2
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tance large for the excitatory synapses, both neurons
satisfy this requirement. However, because of the differ
membrane properties, the spike latency is different. I1 sp
with a minimal delay, whereas I2 spikes with much long
delay. With our models of the interneurons, the latency of
feedback inhibition through I1 can be less than 1 msec,
the delay of the feedforward inhibition through I2 can be
the range from 5 msec to 15 msec.

B. Spike sequence recognition

The spatiotemporal input spikes are represented as s
sequences with the interspike intervals assumed to be in
tweenTmin andTmax. An example is 2431 . . . ,which means
that afferent 2 carries a spike first, followed by afferents 4
1, etc. The input spikes drive the spiking of the neurons
the network. In some parameter regimes, spikes in an e
tatory neuron indicate the recognition of a specific input
quence. N4 spikes if and only if there is a sequence 123
the input stream, N3 if and only if 123, and N2 if and only
12. In other words, N4 recognizes input spike seque
1234, N3 recognizes 123, and N2 recognizes 12. N1
special neuron; it spikes once every time it gets an in
spike. We describe the parameter regimes in the follow
section. In this section, we describe how the network op
ates to achieve such selectivity.

Except N1, each excitatory neuron has two states at
times of the input spikes, the down state and the up state.
down state is characterized by a low membrane potential
a net negative or zero synaptic current. An input spike t
neuron in the down state cannot make it spike. This is ma
due to the spiking of interneuron I2: The powerful feedfo
ward inhibition checks the depolarizing action of the inp
spike before the membrane potential could reach the s
threshold from the down state. The feedforward inhibiti
further returns the neuron to the down state by the time
the next spike input. Hence, input sequences such as 3
cannot cause N3 to spike from the down state. Initially,
excitatory neurons are in the down states, and any input
quence without 1 in it will not be able to make any of th
excitatory neurons spike. In this case, each input spike de
larizes for short duration the membrane potential of the n
ron that receives the input. I2 spikes in response to e
input spike, whereas I1 does not spike at all.

The excitatory neuron can also be in the up state, whic
characterized by a high membrane potential. Upon receiv
an input spike, the neuron in the up state can spike before
arrival of the feedforward inhibition from I2. An excitator
neuron goes from the down state to the up state if it rece
a spike from its immediate neighbor preceding it in the s
fire chain.

An input to N1 makes it spike once. The spike from N
causes N2 to jump to the up state; it also induces I1 to sp
before I2 could. The spike from I1 inhibits all neurons in t
chain, and keeps N2 from spiking before the next input
also suppresses the spiking of I2, abolishing the feedforw
inhibition that would have followed the spike input. Th
suppression is important for keeping N2 in the up state at
next input. Besides the inhibition from I1, I2 also receives
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excitation from N1, which balances the effect of the inhib
tion to keep the membrane potential of I2 subthreshold
not hyperpolarized. Without the balancing, the responsi
ness of I2 to spike inputs can be compromised.

After the input to N1, there are three possibilities for t
next input.

~a! If the input is again 1, N1 spikes again, and N2 sta
in the up state without spiking.

~b! If the input is 2, N2 spikes since it is in the up stat
The spike from N2 induces spiking of I1, which inhibits a
neurons in the chain as well as I2, suppressing the feed
ward inhibition. N2 returns to the down state because of
reset, the refractory period, and the feedback inhibition.
goes to the up state.

~c! If the input is neither 1 nor 2, no neuron in the cha
spikes since N2 is the only one in the up state. The dela
feedforward inhibition is not suppressed, since I1 does
spike. The feedforward inhibition causes N2 to return to
down state. Thus, all neurons are in the down states ag
and the network returns to the initial state. In sum, N2 spi
if and only if the input sequence is 12.

We can extend the above scenario to N3 and show tha
spikes if and only if the input sequence is 123. A differe
role of the feedback inhibition from I1 is introduced. Su
pose that the input is 1231. Before the last input at 1, N4
in the up state because N3 just spiked. But the input 1 cau
N1 to spike and N2 to go to the up state. N4 receives
feedback inhibition via I1, and returns to the down state. T
ensures that input sequence such as 12314 will not make
spike. The same scenario applies to all other neurons in
chain: neuronn spikes if and only if the spike sequence
123 . . .n.

In this paper, we only consider the case of each excitat
neuron getting inputs from different sensory neurons. Ho
ever, this restriction can be lifted by extending the role of t
feedback inhibition. Suppose that two neurons are getting
same inputs, with one in the up state and the other in
down state. The neuron in the up state will spike first beca
it has higher membrane potential. This sends the feedb
inhibition to the other neuron, causing it to remain in t
down state even though it also receives an excitatory in
Thus, the previous scenario can be still preserved.

Several features of the network are crucial for the ope
tion of the network. The feedforward inhibition is used f
preventing the out-of-order input sequences from driv
spikes in the excitatory neurons. The feedback inhibition p
vents the excitatory neurons from spiking immediately af
receiving spikes from upstream neurons; it returns the n
ron that just spiked to the down state; finally, it makes ev
excitatory neuron downstream from N2 to return from the
state to the down state when N1 spikes. The refractory pe
of the neurons is important for ensuring that the most
cently active neuron will not spike multiple times because
the residuals of the excitatory conductance. The inhibit
from I1 to I2 is crucial for keeping the up state since it shu
down the powerful feedforward inhibition. For all these
work, the delay of the feedforward inhibition must be long
than the typical delay of the spiking of the excitatory neuro
plus the delay of the feedback inhibition. In addition, t
5-3
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DEZHE Z. JIN PHYSICAL REVIEW E 69, 021905 ~2004!
minimum time interval between the input spikes must
longer than the delay of the feedforward inhibition. The sy
fire chain of the excitatory neurons is the main structure t
ensures a sequential spiking of neurons when the recogn
input sequence is present.

C. Tuning the parameters

In order for the network to operate as proposed, the c
nection strength of the synapses on the excitatory neu
cannot be arbitrary. The main parameters that need to
tuned are the feedforward excitatory conductanceG1, the
lateral excitatory conductanceG2, the delayed feedforward
inhibitory conductanceG3, and the feedback inhibitory con
ductanceG4. Related parameters are the time constanttE of
the excitatory synapses, the time constantt I of the inhibitory
synapses, the membrane time constantt of the excitatory
neurons, the range (Dmin ,Dmax) of the delay of the feedfor-
ward inhibition, the range (dmin ,dmax) of the delay of the
feedback inhibition, the maximum delay to spikel of the
excitatory neurons, and the refractory timetR of the excita-
tory neurons. The feedforward excitatory conductanceG0 to
N1 is different from that to other excitatory neurons, sin
N1 is special in the sense that it spikes to every input. T
reversal potential of the excitatory synapses is 0 mV. T
relative relationship of the potentials isEI,L,R,Q,0.
Here EI is the reversal potential of the inhibitory synapse
and L, Q, and R are the resting membrane potential, t
spike threshold, and the reset potential of the excitatory n
rons, respectively.

The feedforward excitation conductanceG1 is bounded in
a finite range. It cannot be too large, otherwise the seque
selectivity is lost since the neuron can spike even from
down state before the delayed feedback inhibition could p
vent it from spiking. The conductanceG1 cannot be too
small; otherwise the input spike cannot cause the neuro
spike even from the up state.

The lateral excitatory conductanceG2 is also bounded
within an interval. The conductanceG2 cannot be too large
otherwise the spiking of an excitatory neuron will cause
immediate cascade of spiking of the neurons in the ch
even without the spike inputs, since the feedback inhibit
could not react fast enough to prevent this cascade. The
ductanceG2 cannot be too small; otherwise neurons in t
chain cannot jump to the up states when the upstream
rons spike.

The delayed feedforward inhibitory conductanceG3 must
be large enough to prevent the neuron in the down state f
jumping to the up state. It should also be large enough
return a neuron in the up state to the down state when
next input spike is not to the neuron in the up state. T
feedback inhibitory conductanceG4 is also bounded from
below. It must be large enough to counteract the excitat
effect of G2 to ensure that the neuron receiving the late
excitation does not spike immediately. It also must be la
enough to make the neuron just spiked to return to the do
state. Finally, it should be large enough to return any neu
in the up state, if it is not N2, to the down state when N
spikes.
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The inhibitory conductanceG3 and G4 also have upper
bounds. The upper bound ofG3 is mainly due to the residua
effect of the conductance. Too largeG3 causes the inhibitory
effect to linger beyond one input spike, and suppresses
neurons from transiting to the up states. Similarly,G4 has an
upper bound because of the residual effects. Another up
bound forG4 is determined by the requirement that the co
bined effect ofG2 andG4 should leave the neuron in the u
state. Too largeG4 cannot achieve this.

The lower boundTmin of the time intervals of the inpu
spikes must be larger than the maximumDmax of the delays
of the feedforward inhibition, as discussed before. Beca
of the finite synaptic time constants, the neurons need fi
time to make transitions between the up and down sta
Therefore,Tmin should be sufficiently larger thanDmax. In
practice, settingTmin5Dmax12t I works quite well. The
maximum Tmax of the input spike intervals cannot be to
large. This is because the natural decay of the neuron’s m
brane potential degrades the up states to the down stat
long intervals are present in the input sequence. In this c
a correct sequence may not be able to spike the rele
neurons.

The above description of the bounds of the synaptic c
ductance can be put into mathematically rigorous forms. T
details of the derivations and the results are given in App
dix B.

D. Performance of the network

To illustrate the network performance, we show a simu
tion result in Fig. 4. The network consists of eight excitato
neurons. The excitatory and inhibitory synapses on the e
tatory neurons have time constants of 3 msec. The lo
limit of the delay of the feedforward inhibition is 5 mse
and the upper limit is 7 msec. The membrane time cons
of the excitatory neurons is 20 msec. The lower limit of t

FIG. 4. Spike sequence recognition. The spike raster of neu
N1 to N8 and the interneurons I1 and I2 is plotted. The input sp
sequence is indicated in the bottom row, and the input spike tim
are indicated with the vertical lines in the row next to the botto
row. N8 spikes if and only if the input stream contains a sub
quence 12345678, as highlighted with the gray rectangle in
figure; therefore, N8 recognizes this particular subsequence.
5-4
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SPIKING NEURAL NETWORK FOR RECOGNIZING . . . PHYSICAL REVIEW E69, 021905 ~2004!
input spike time intervals is 13 msec, and the upper limi
32 msec. The values of the synaptic conductance areG1

52.4, G254.8, G3520.2, G4522.8, G054.4, in the unit
of the leak conductance of the excitatory neurons. Ot
relevant parameters areEI5275 mV, L5270 mV, R
5264 mV, andtR52 msec. The input spike sequences a
generated to include a subsequence running from 1 to
block of 111, a block of 888, a block of 11222, as well as tw
blocks of randomly selected sequences. The time inter
between the input spikes are selected randomly from the
terval 13 msec and 32 msec, except for 111, whose inter
are 13 msec. As can be seen from the figure, N8 spikes
to the subsequence 12345678. A sequential spiking of n
rons in the synfire chain leads to the spiking of N8. All oth
subsequences fail to spike N8. Extensive simulations w
randomly generated input sequences confirm that the
spikes if and only if the subsequence 12345678 is presen
the input stream. The spiking of I1 and I2 is complementa
When a subsequence is recognized, I1 spikes, and I2 i
lent. When the subsequence contains no recognized
quences, I2 spikes, and I1 is silent. These spiking prope
of the interneurons reflect their roles in shaping the seque
recognition function of the network.

In Fig. 5, we show the membrane potentials of the ex
tatory neurons in response to the spike inputs. Focus on
as an example. The membrane potential is in a hyperpo
ized state most of the time. This is because the reversal
tential of the inhibition is more negative than the resti
membrane potential, and the neuron receives frequent i
bition from I1 or I2. When the neuron gets an out-of-ord
direct input, the membrane potential shows a brief depo
ization. In the span of the recognized input sequence,
membrane potential stays in a depolarized state~up state!
following the spike of N3. Subsequent direct input spikes
neuron, and the membrane potential returns to the hype
larized state.

E. Mapping into a finite state machine

The sequence recognizing dynamics of the network
be mapped into that of a finite state machine. We illustr
this point in Fig. 6 for the case of four excitatory neurons
the synfire chain. At the times of the spike inputs, the ex
tatory neurons as a system can have only four possible st
The first state is S1, in which all neurons are in the do
state ~except N1, for which the distinction of the up an
down states cannot be made because it spikes for every
at afferent 1!. Any input other than 1 will not make the
system to leave S1, since all neurons stay in the down st
This is indicated in the diagram with an arrowed arc th
starts from and returns to S1. An input to 1 causes N1
spike and N2 to be in the up state. All other neurons are
the down states. This state of the system, S2, is characte
with N2 as the only neuron in the up state. The transit
from S1 to S2 is indicated with a straight line arrow starti
from S1 and ending at S2. From S2, there are three po
bilities. If the input is 1, N1 spikes again, N2 remains in t
up state, and all other neurons stay in the down state. In o
words, the system stays in S2. This is indicated with
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arrowed arc starting from and returning to S2. If the input
neither 1 nor 2, no neuron spikes, and the feedforward in
bition makes N2 to return to the down state. Therefore,
system returns to S1 with all neurons in the down states. T
is indicated with the arrowed arc starting from S2 and end
at S1. Finally, if the input is 2, N2 spikes and returns to t
down state, while N3 jumps into the up state. This is a n
state of the system, S3, with N3 as the only neuron in the
state. This transition from S2 to S3 is indicated with t
straight arrow starting from S2 and ending at S3. Simila
at S3, there are three possibilities. If the input is 1, N
spikes, N2 jumps to the up state, and N3 returns to the do
state because of the feedback inhibition. The system ret
to S2. If the input is neither 1 nor 3, N3 returns to the dow
state, and the system returns to S1. Input 3 makes N3

FIG. 5. Dynamics of the membrane potentials of the excitat
neurons. The bottom row of the figure shows the input spike
quence. The vertical lines in the row above the bottom row indic
the input spike times. The time period that contains the recogn
sequence is indicated by the gray rectangle. Input spikes to neu
in the down states cause a short duration depolarization of the m
brane potentials. Input spikes to the neurons in the up states c
spiking of the neurons. The down states are characterized by
membrane potentials with frequent inhibitory postsynaptic pot
tials, and the up state is characterized by the extended perio
high membrane potentials.
5-5



e
u
d
th
te
o

sh
om
al
4

a
e

on
pi
og
ta
n

i
i
i

e
gs
a

ns
ra

-
se-

he
the
be
e-

eu-
rane
ha-
al
og-

nly
eir
kes
og-
or

ike
se-

is-
tates
sent
ticu-
ally

for
l
-

into
-
er-

ly
are

in-
ec-
of

fast
ast
he
eu-

lar

u-
ry

eas,
eu-

ses
the
em-
Fig.

ic
te
st
u
N
e
a

ea
g
ith
e

mp
f N
t
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spike and N4 to jump to the up state. This leads to a n
state of system, S4, with N4 as the only neuron in the
state. The same choices are there for S4, with the only
ference being that for input 4, there is no next neuron in
chain to jump to the up state, so N4 spikes and the sys
returns to S1. The spiking of N4 signals the recognition
the input sequence 1234, so an end state R is added to
this fact. This end state is inserted to distinguish input 4 fr
other inputs that are neither 1 nor 4. These other inputs
cause the system to return to S1, but without causing N
spike.

In general, there areN states for the network withN ex-
citatory neurons in the synfire chain. One state is S1, with
neurons in the down states. In all other states, only one n
ron is in the up state. The sequence recognition is d
through transitions between these finite states with the s
inputs. As shown in Fig. 6, the key for the sequence rec
nition is that a unique input sequence leads to each s
~except S1!. Reaching each state thus signals the detectio
a specific input sequence.

III. DISCUSSION

A. Selectivity of spatiotemporal spikes

Neurons responding to specific spatiotemporal sensory
puts are found in various brain areas of animals. Cells
primate auditory cortex are selective to sound patterns w
complex temporal and spectral context@23#; neurons in
macaque nonprimary auditory cortex discriminate monk
vocalizations @24#; species-specific and bird’s own son
evoke strong responses in neurons of songbird forebrain
premotor areas@25#; and specific spatiotemporal deflectio
of multiple whiskers produce strong responses in cells of

FIG. 6. The finite state machine corresponding to the dynam
of the network with four excitatory neurons. There are four sta
for the system of the excitatory neurons. S1 corresponds to the
of all neurons in the down states, S2 to that of only N2 in the
state, S3 to that of only N3 in the up state, and S4 to that of only
in the up state. The arrowed lines indicate the transitions betw
the states with the spike inputs. The inputs corresponding to e
transition are printed near the lines. Here a bar on a number m
‘‘input other than.’’ A special stateR is indicated as the recognizin
end state, with N4 spiking. From R, the system returns to S1 w
out any input~denoted withe). There is a unique input sequenc
that can lead to each of the states S2, S3, S4, and R. For exa
S4 can be reached only by input sequence 123. The spiking o
indicates the system has reached S4; meanwhile, it signals tha
sequence 123 is recognized.
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barrel cortex@26#. It is most likely that there are many bio
logically plausible mechanisms for such spatiotemporal
lectivity. Our network provides one.

Two features of our network are noteworthy. First, t
maximum length of the recognized spike sequence equals
number of the excitatory neurons in the chain, and can
arbitrarily long. Thus, the duration of the recognized s
quence is not limited by biophysical time scales of the n
rons such as the synaptic time constant and the memb
time constant. This is quite different from some other mec
nisms of spatiotemporal selectivity, in which biophysic
time scales constrain the maximum duration of the rec
nized spike patterns@17,18#. Second, time warping of the
sequence does not affect recognition. Our mechanism o
requires the correct ordering of the input spikes, not th
exact timings. As long as the intervals between input spi
lie within a specific range, which can be quite broad, rec
nition is intact. Invariance to time warping is beneficial f
tasks such as speech recognition@18#.

B. Implementing a finite state machine with spiking neurons

Our network implements a finite state machine for sp
sequence recognition. A finite state machine processes
quential inputs by transitions among a finite number of d
crete states. For some finite state machines, certain s
may be reached if and only if a specific sequence is pre
in the input stream. These states are thus selective to par
lar input sequences. Finite state machines are conceptu
simple but functionally powerful, and have been used
analyzing digital computers@8# and the processing of natura
languages@9#. Artificial neural networks such as discrete
time rate-model neural networks have long been mapped
finite state machines@10#. Our network shows that biologi
cally plausible spiking neural networks can also be und
stood in terms of finite state machines.

The neurons and their connectivity in our network close
resemble structures found in various cortical areas. There
diverse types of interneurons in the brain, and different
terneurons often participate in different subsets of conn
tions @11,12#. For example, there are two common types
inhibitory interneurons in rat somatosensory neocortex,
spiking neurons and low threshold spiking neurons. F
spiking neurons get strong feedforward inputs from t
thalamocortical neurons, whereas low threshold spiking n
rons only get weak feedforward inputs@11#. Both types of
neurons reciprocally connect with high probability to regu
spiking excitatory neurons@11#. This synaptic organization
of interneurons is quite similar to that of the two interne
rons in our network. The synfire chain structure of excitato
neurons may also be quite common in some cortical ar
where the connection probability between the excitatory n
rons is low@11#.

C. Extension to more complex networks

The operation of our network relies on potent synap
that can reliably induce transitions between the down and
up states. The resulting changes of the postsynaptic m
brane potentials can be as much as 15 mV, as evident in
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5. The synapses are quite strong compared to those c
monly observed in cortex. A possible remedy is to use s
chrony. We can replace each excitatory neuron in the
work with a pool of interconnected excitatory neurons th
can transit collectively between the down states and the
states and spike synchronously from the up states. We
substitute the two interneurons with two groups of intern
rons that spike synchronously. We can replace the input s
sequences with sequences of synchronized spikes
groups of sensory neurons. Such spatiotemporal seque
of synchronized spikes are observed in projection neuron
the locust antennal lobe@6#. Synchronous spikes can induc
large changes of the postsynaptic potentials. Operating
synchrony should also make the network more robust aga
noise.

There are other biophysically plausible ways of imp
menting a sequence recognizing finite state machine.
possibility is to substitute each of the excitatory neurons
our network with a group of interconnected excitatory a
inhibitory neurons that supports bistable persistent acti
@27#. In this case, the down and up states of the neurons
replaced with the quiescent and persistent states of the
ron groups. This implementation may be more relevant
sequence selectivity in the prefrontal cortex. Other possib
ties include using synaptic and cellular mechanisms suc
N-methyl-D-aspartate receptors, voltage dependent con
tance, rebound excitation from inhibition, etc., for creati
the up and down states.

Our simple network recognizes a single spike sequen
Ultimately, such network should be embedded in more co
plex networks to expand the capacity of spatiotemporal sp
processing. Viewed as devices that transform input s
tiotemporal spikes to output spatiotemporal spikes, m
complex spiking networks may be analyzed as finite s
machines. Adding noise may turn the spiking networks i
Markov models or related hidden Markov models, which a
probabilistic versions of the finite state machines.

D. Searching for the network in the brain

Several properties of our network can be used to find i
the brain. First, the network structure is orderly. The exc
tory neurons form a synfire chain, and two types of intern
rons mediate fast feedback and delayed feedforward inh
tion, respectively. Second, the spiking of the tw
interneurons is anticorrelated. Each input evokes spiking
either I1 or I2, but not both. A span of repeated spiking of
is complemented with a period of silence of I2, signaling t
recognition of a long input spike sequence~see Fig. 4!.
Third, the complexity of the input patterns that drive t
excitatory neurons is distributed. N1 spikes to every inpu
it, while neurons further down in the synfire chain are mo
selective and harder to drive with random inputs. Finally,
membrane potentials of the excitatory neurons~except N1!
show up and down states and quick transitions betw
them. Neurons spike only at the end of up states. The n
rons can also return to the down state from up state with
spiking.
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APPENDIX A: MODELS OF THE NEURONS
AND THE SYNAPSES

We model the excitatory neurons as leaky integrate
fire neurons with finite refractory time after spike. The me
brane potential of an excitatory neuron evolves according

t
dV

dt
5L2V2gEV2gI~V2EI !. ~A1!

Heret is the membrane time constant,L is the resting mem-
brane potential,EI is reversal potential of the inhibitory syn
apse,gE is the excitatory synaptic conductance, andgI is the
inhibitory synaptic conductance. The synaptic conductanc
scaled with the leak conductance of the neuron. If the me
brane potential reaches the thresholdQ, the neuron spikes
and the membrane potential is reset to the reset pote
R. After spike, the membrane potential stays at the re
potential for a refractory periodtR . In the simulations of the
paper, we use the following values for the paramete
t520 msec,L5270 mV, Q5254 mV, R5264 mV, EI
5275 mV, andtR52 msec.

We model interneuron I1 as a multicurrent integrate a
fire neuron. The model is modified from the conductan
based fast spiking interneuron model of Erisiret al. @20#,
which contains fast deactivating Kv3.1-Kv3.2 K1 channels.
The modified neuron retains all subthreshold conducta
currents, but replaces the spike generating process
simple threshold and reset mechanism. The neuron spik
its membrane potential exceeds the threshold value, and
membrane potential and the gating variables are rese
fixed values after spike. The modification is proposed
Lewis and Gerstner@19#. The following is the model used in
our simulations. The membrane potentialV of the neuron
satisfies the following equation:

C
dV

dt
52I L2I Na2I K12I K32gEV2gI~V2EI !. ~A2!

Here C51 mF/cm2 is the membrane capacitance;I L
5gL(V2EL) is the leak current with the leak conductan
gL51.25mS/cm2 and the resting membrane potentialEL
5270 mV; I Na5gNam

3h(V2ENa) is the Na1 current with
conductancegNa5112.5mS/cm2 and Na1 reversal potential
ENa574 mV; I K15gK1n4(V2EK) is the Kv1.3 current with
conductancegK150.225mS/cm2 and K1 reversal potential
EK5290 mV; I K35gK3p2(V2EK) is the Kv3.1-Kv3.2
current with conductancegK35225 mS/cm2; gE is the exci-
tatory conductance;gI is the inhibitory synaptic conductanc
with reversal potentialEI5275 mV. The gating variables
satisfy the equation

dy

dt
5ay~V!~12y!2by~V!y,y5m,h,n,p, ~A3!
5-7
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with

am5~3020240V!/$exp@2~V275.5!/13.5#21%,
~A4!

bm51.2262/exp~V/42.248!, ~A5!

ah50.0035/exp~V/24.186!, ~A6!

bh52~0.871210.017V!/$exp@2~V151.25!/5.2#21%,
~A7!

an52~0.61610.014V!/$exp@2~V144!/2.3#21%,
~A8!

bn50.0043/exp@~V144!/34#, ~A9!

ap5~952V!/$exp@2~V295!/11.8#21%, ~A10!

bp50.025/exp~V/22.222!. ~A11!

The spike threshold is230 mV, and the refractory period
after spike is 1.5 msec. After spike, the membrane poten
is reset to285 mV, and the gating variablesm,h,n,p are
reset to 0, 0.16, 0.88, 0.2, respectively.

We use the quadratic integrate and fire neuron model
interneuron I2. We follow Hansel and Mato@21# and set the
parameters to match the properties of the Wang-Bus
model of fast spiking hippocampal interneurons@22#. In the
model, the membrane potential evolves according to

C
dV

dt
5A~V2V* !22I c2gEV2gI~V2EI !. ~A12!

Here C50.9467mF/cm2 is the membrane capacitance; t
other parameters have valuesV* 5259.5462 mV, A
50.012 875mS/cm2/mV, and I c50.1601mA/cm2; gE is
the excitatory synaptic conductance;gI is the inhibitory syn-
aptic conductance with reversal potentialEI5275 mV. The
spike threshold is226.3462 mV, and the reset potential aft
spike is264.1462 mV.

We use the ‘‘kick-and-decay’’ model of the synaptic co
ductance. Upon receiving an excitatory spike, the excitat
conductance of the neuron jumps a finite valueGE , which is
the maximum conductance of the synapse that receives
spike:

gE→gE1GE . ~A13!

In between spikes, the conductance decays exponent
with time:

tE

dgE

dt
52gE . ~A14!

HeretE is the synaptic time constant of the excitatory sy
apse. Similarly, upon receiving an inhibitory spike, the
hibitory conductance of the neuron jumps a finite valueGI ,
the maximum conductance of the synapse that receives
spike; and in between spikes the conductance decays e
nentially with time:
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gI→gI1GI , ~A15!

t I

dgI

dt
52gI . ~A16!

The excitatory and inhibitory synapses on the excitat
neurons have time constants typically at 3 msec. The exc
tory synapses on interneuron I1 have a time constant
msec, and inhibitory synapses have a time constant 1 m
The excitatory and the inhibitory synapses on interneuron
have a time constant 1 msec.

The network dynamics is simulated with fourth-ord
Runge-Kutta method with time step 0.01 msec.

APPENDIX B: TUNING THE PARAMETERS

1. The pulse coupling limit

In this section, we use thed pulse coupling limit of the
synaptic conductance for tuning the parameters. This lim
sufficiently simple for analytical treatment, yet comple
enough to retain the essence of the spiking dynamics. Pr
ously, this limit was used to prove that the dynamics o
general class of recurrent networks of leaky integrate and
neurons converge to spike sequence attractors@5#. In this
limit, the synaptic time constant is set to zero, but the cha
transfer at each spike is kept finite. More precisely, the s
aptic conductance is modeled as

gE5GEtd~ t2tspike!, ~B1!

gI5GItd~ t2tspike!. ~B2!

Here tspike is the spike time,GE and GI are the maximum
conductance of the excitatory and inhibitory synapses rec
ing the spike, andt is the membrane time constant. An e
citatory spike causes the membrane potential of the post
aptic neuron to jump from its initial valueV to

V15Ve2GE. ~B3!

An inhibitory spike causes the membrane potential to ju
to

V15EI~12e2GI !1Ve2GI. ~B4!

Simultaneous spikes of both inhibition and excitation cau
the membrane potential to jump to

V15Ee f f~12e2GE2GI !1Ve2GE2GI. ~B5!

HereEe f f is the effective reversal potential, and is defined

Ee f f5
GIEI

GE1GI
. ~B6!

The combined effect of an excitation and an inhibition is
effective inhibitory synapse with the effective reversal pote
tial. Details of deriving the above results can be found in o
previous work@5#.

With above results on the effects of thed pulse coupling
limit, we now derive the relationships between the excitato
feedforward connection strengthG1, the excitatory lateral
connection strengthG2, the delayed feedforward inhibition
5-8
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connection strengthG3, and the feedback inhibition strengt
G4. For simplicity, we neglect the delays of the feedba
inhibition, and assume that the lateral excitation and fe
back inhibition are simultaneous. The delay of the feedf
ward inhibition is assumed to be a constant valueD. We
require the minimumTmin of the intervals of the input spike
to be larger thanD.

A neuron is in the down state if its membrane potentia
less than a critical valueVc ; it is in the up state otherwise
We assume the following ordering of the voltages:

EI,L,Vc,Q,0. ~B7!

To ensure that the neuron spikes only in the up state,
must have the following relation forG1:

Q5Vce
2G1. ~B8!

SinceL,Vc,Q, we have

G1, lnS L

Q D . ~B9!

The delayed feedforward inhibitionG3 should be large
enough to accomplish two tasks: bring the neuron to
down state when it is excited from the down state by
feedforward excitation; bring the neuron to the down st
from the up state when the input sequence is out of orde
other words, the neuron should return from any state to
down state upon receiving the feedforward inhibition. A s
ficient lower bound is found by requiring the membrane p
tential to go belowVc from Q, since this is the most de
manding case for the action of the feedforward inhibitio
This leads to the following inequality forG3:

EI~12e2G3!1Qe2G3,Vc . ~B10!

It is easy to see that a sufficiently largeG3 should satisfy the
above equation.

When a neuron in the chain spikes, the neuron imme
ately next to it down the synfire chain receives both late
excitation and feedback inhibition. The combined effect
the excitation and the inhibition is such that the membra
potential of the postsynaptic neuron should be in the up s
without going over the threshold. One necessary conditio
that the effective reversal potential of the combined exc
tion and inhibition should be larger thanVc but smaller than
Q. This is given by

Vc,
G4EI

G21G4
,Q. ~B11!

Another requirement is that the membrane potential sho
jump beyondVc from the lowest possible initial value, an
remain there for at least the minimumTmin of the time inter-
vals between the input spikes. Since the membrane pote
can be no lower thanEI , the inhibitory reversal potentia
@because of Eq.~B7!#, it is sufficient to require that the up
state can be achieved and sustained forTmin from a mem-
brane potential atEI :
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Vd[
G4EI

G21G4
~12e2G22G4!1EIe

2G22G4.Vce
Tmin /t

2L~eTmin /t21!. ~B12!

SinceVd,Q, the above inequality leads to a lower limit o
G1:

G1. lnS L

Q
1

Q2L

Q
e2Tmin /tD . ~B13!

Together with Eq.~B9!, we have the upper and lower bound
for G1. Equation~B11! requires that the ratio betweenG2
andG4 should be in a bounded range. It is easy to see
with a ratio of G2 and G4 such that the effective reversa
potential is close toQ, a sufficiently large sum ofG2 andG4
guarantees that Eq.~B12! can be satisfied. Therefore, solu
tions to Eqs.~B11! and~B12! can always be found. Since th
effective reversal potential of the excitation and inhibition
less than the threshold, repeated firing of N1 will not cau
N2 to spike.

If a neuron other than N2 is in the up state, spiking of N
should bring the neuron back to the down state through
feedback inhibition. The feedback inhibition should also
strong enough to ensure the neuron just spiked to retur
the down state upon receiving the feedback inhibition.
these requirements can be satisfied ifG4 is large enough to
bring the membrane potential down belowVc from Q:

EI~12e2G4!1Qe2G4,Vc . ~B14!

The above equation can be satisfied as long asG4 is large
enough.

From the up state, the membrane potential decays be
the next input spike can come in. If the interval between
input spikes is too large, the neuron can decay into the do
state before the arrival of the next input. This will lead to
response even if the input sequence is correct. Theref
there is a maximum valueTmax for the allowed time intervals
of the input spikes for correct operation of the network. T
sufficient upper limit ofTmax is derived by requiring the
neuron starting fromEI to stay in the up state by the tim
Tmax after receiving the lateral excitation and the feedba
inhibition. This is expressed in the following inequality:

Tmax,t lnS L2Vd

L2Vc
D . ~B15!

HereVd is the membrane potential of the neuron after rece
ing the lateral excitation and the feedback inhibition start
from EI , and is defined in Eq.~B12!.

A final condition is for G0, the feedforward excitation
strength to N1, which should spike following every inp
spike. This is achieved by requiring that N1 can spike ev
from the lowest possible membrane potential:

EIe
2G0.Q. ~B16!

As long as all above equations are satisfied, the netw
will perform the sequence recognition task as propos
5-9
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These bounds are sufficient but not necessary. Tig
bounds can be derived with more detailed analysis.

2. The case of finite synaptic time constants

With finite synaptic time constants, we cannot write dow
the explicit analytical conditions for the parameters. Nev
theless, we can prescribe numerical procedures for find
the bounds of the parameters much in the same way as in
d pulse coupling case. The main impact of the finite synap
times is the finite rise time of the membrane potentials a
the temporal summation effects of the conductance. We
longer assume that the lateral excitation and the feedb
inhibition arrive at the postsynaptic neuron at the same ti
A delayed feedback inhibition imposes an upper bound
the strengthG2 of the lateral excitation, since the postsyna
tic neuron should not spike before the arrival of the inhi
tion. This upper limit onG2 imposes an upper limit on th
strengthG4 of the feedback inhibition, since too large inh
bition will not be able to leave the neuron at the up st
given that the excitation strength is upper bounded. As
have seen in thed pulse coupling case, there is a lower lim
for G4 since it needs to be large enough to return the neu
from the up states to the down states when N1 spikes
return the neuron to the down states after spiked. Theref
the parameter regime forG4 will be limited. There are also
upper limits forG3 andG4 coming from the constraints im
posed from the temporal summations of the conductan
Too largeG3 and G4 will cause large accumulation of th
inhibitory conductance during the operation, which can s
press the neurons from ever going to the up states.

As in the d pulse coupling case, we find the sufficie
bounds for the parameters by considering the extreme
ditions of the membrane potentials and the synaptic cond
tance when neurons make transitions between the down
the up states. With this approach, some parameter reg
will be missed; however, the derivations of the conditions
simple. A number of parameters are useful to define.
define the lower and upper limits of the delay of the feedf
ward inhibition asD1 and D2, and those of the feedbac
inhibition asd1 andd2. With a finite excitatory synaptic time
constant and a finite membrane time constant, it takes a fi
time for the excitatory postsynaptic potential to reach
peak. We denote the upper limit of this time to peak asl. We
assume that these delays satisfy the following inequality

l1d2,D1 . ~B17!

In other words, the minimum of the delay of the feedforwa
inhibition must be larger than the maximum delay of t
feedback inhibition. This makes it possible for interneuron
to prevent interneuron I2 from spiking. We also assume
following relationship between the synaptic time constan

tE<t I . ~B18!

This condition simplifies some of the arguments in the de
vations of the bounds. As before, we denote the minim
time between the input spikes asTmin . We must have a
relationship
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D2,Tmin . ~B19!

In practice, we find that makingTmin.D212t I is useful for
getting solutions with the procedures we derive below.
Tmin too close toD2 tends to limit the solution space.

We start with the definition of the down state. A neuron
in the down state if its membrane potential is less thanVc ,
the critical membrane potential, and the net synaptic curr
on the neuron is negative, i.e.,

V,Vc , ~B20!

I s~V,gE ,gI ![2gEV2gI~V2EI !,0. ~B21!

Here I s is the synaptic current of the neuron. Because
synaptic time constant of the inhibition is longer than that
the excitation, a neuron in the down state at one time w
remain in the down state without any spike inputs. The va
of Vc is randomly selected from the range (L,Q).

The amount of the feedforward excitatory conductan
G1 is such that a neuron receiving the input spike should
spike from the down state before the delayed inhibition c
arrive. To calculate this, we set the initial condition at t
most depolarized down state, apply the excitatory spike
put, and integrate for the maximum delay of the feedforwa
inhibition. The membrane potential should stay subthresh
during this integration. We set the maximum of the feedf
ward excitatory conductance that satisfies this condition
G1. The most depolarized down state is the one with me
brane potential at the critical value, and the residual syna
conductance equal to zero. The following is the proced
for calculatingG1 .

Procedure I: calculateG1.
Initial conditions:

V5Vc ,

gE5G1 ,

gI50.

Integration time:

t5~0,D2!.

Condition:

V~ t !,Q.

Iteration:
DecreaseG1 until the condition is met.

With G1 determined, we calculate a lower limit of th
strengthG3 of the feedforward inhibition. The inhibition
should be strong enough to ensure a neuron in the down
to remain in the down state before the arrival of the n
input spike. To get this lower limit, we consider the extrem
condition of the neuron that requires a large inhibition. Th
condition is realized for the neuron receiving the feedforwa
excitation from the most depolarized down state. Here,
membrane potential can be at most near the threshold,
the excitatory conductance is at mostG1e2D1 /tE. The least
5-10
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possible time for the inhibition to do its job is the minimu
possible time span between the feedforward inhibition a
the next input spike. So here is the procedure for findin
lower limit of G3 .

Procedure II: calculate a lower limit ofG3.
Initial conditions:

V5Q,

gE5G1e2D1 /tE,

gI5G3 .

Integration time:

t5~0,Tmin2D2!.

Condition:

V~ t !,Q,

V~Tmin2D2!,Vc ,

I s~Tmin2D2!,0.

Iteration:
IncreaseG3 until the condition is met.

Here, I s(Tmin2D2) represents the residual synaptic curre
at the end of the integration.

We now consider the transition from the down state to
up state due to the lateral excitation and the feedback i
bition. This transition imposes an upper limit on the late
excitation strengthG2 and a lower limit on the feedbac
inhibition strengthG4. These limits come from the require
ment that the postsynaptic neuron does not spike becau
the lateral excitation. The condition that imposes the str
gest constraints on these limits is the case of N1 repeat
spiking with the smallest possible time intervals. This ha
pens when the input sequence is 1111 . . . . N2 should not
spike under these repeated lateral excitations, even sta
from the most depolarized down state. We find the limits
two steps. First, we find an upper limit ofG2 by requiring
that N2 does not spike from the most depolarized down s
before the arrival of the feedback inhibition.

Procedure III : calculate an upper limit ofG2.
Initial conditions:

V5Vc ,

gE5G2 ,

gI50.

Integration time:

t5~0,d2!.

Condition:

V~ t !,Q.
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Iteration:
DecreaseG2 until the condition is met.

Once we find the upper limit ofG2, we randomly setG2
from 0 to this maximum allowed value. We then decide t
lower limit of G4. The feedback inhibition should be stron
enough to keep N2 from spiking. This is done in the follow
ing procedure that contains a two-step loop.

Procedure IV: calculate a lower limit ofG4.
Initial conditions:

V5Vc ,

gE50,

gI50.

Integration:
Loop
Step 1:gE→gE1G2. Time: t15(0,d2).
Step 2:gI→gI1G4. Time: t25(0,Tmin2d22l).
Condition:

V~ t1!,Q,V~ t2!,Q.

Iteration:
IncreaseG4 until the condition is met.

The loop is stopped if the steps converge to a periodic or
The neuron state at the end of step 2 after the loop conve
is the most depolarized up state at the times of the sp
inputs. This state will be useful for calculations of other lim
its. We denote the membrane potential at this state asV1, the
residual excitatory conductance asgE1, and the residual in-
hibitory conductance asgI1.

Neurons in the up states must return to the down state
the input spikes are out of order and the delayed feedforw
inhibition arrives. This gives another lower limit ofG3. To
calculate this, we start with the most depolarized up st
The integration has two steps. First, the neuron state de
from the most depolarized up state before the arrival of
delayed inhibition. Second, the feedforward inhibition a
rives, and returns the neuron to the down state before
next input comes. The procedure is as follows.

Procedure V: calculate a lower limit ofG3.
Initial conditions:

V5V1 ,

gE5gE1 ,

gI5gI1 .

Integration:
Step 1: Time:t15(0,D1).
Step 2:gI→gI1G3. Time: t25(0,Tmin2D2).
Condition:

V~ t25Tmin2D2!,Vc ,

I s~ t25Tmin2D2!,0.

Iteration:
IncreaseG3 until the condition is met.
5-11
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A neuron in the up state should return to the down stat
it is not N2 and the next input is to N1. In this case, t
transition is due to the feedback inhibition induced by t
spiking of N1. This gives a lower limit on the strengthG4 of
the feedback inhibition. Since the neuron in the up state
not N2, it must arrive at the up state from a down sta
Therefore, the most demanding situation for the feedb
inhibition is that the neuron arrived at the up state from
most depolarized down state. So here is the procedure
calculating this lower limit.

Procedure VI: calculate a lower limit ofG4.
Initial conditions:

V5Vc ,

gE50,

gI50.

Integration:
Step 1:gE→gE1G2.
Time: t15(0,d2).
Step 2:gI→gI1G4.
Time: t25(0,Tmin2l2d21d1).
Step 3:gI→gI1G4.
Time: t35(0,Tmin2l2d2).
Condition:

V~ t35Tmin2l2d2!,Vc ,

I s~ t35Tmin2l2d2!,0.

Iteration:
IncreaseG4 until the condition is met.

There is yet another lower limit ofG4. After an excitatory
neuron spikes, it must return to the down state before
arrival of the next spike input. This is done through the co
bined effects of the reset of the membrane potential, the
fractory time period, and the feedback inhibition. The m
demanding situation for the inhibition is for the case of N
Repeated spiking of N1 can cause N2 to be in the m
depolarized up state. The residuals of the synaptic cond
tance from this up state work against the action of the fe
back inhibition after N2 spikes. A long refractory perio
helps, since the residuals decay during the refractory per
We assume that the refractory time period is longer than
maximum delay of the feedback inhibition. A large reset
the membrane potential also helps to reduce the burde
the feedback inhibition. The following is the procedure
calculate the limit.

Procedure VII : calculate a lower limit ofG4.
Initial conditions:

V5R,

gE5G1e2tR /tE1
G2e2(Tmin2l1tR)/tE

12e2Tmin /tE
,
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gI5G4e2(tR2d1)/t I1
G4e2(Tmin2l2d21tR)/tE

12e2Tmin /t I
.

Integration time:

t5~0,Tmin2l2tR!.

Condition:

V~Tmin2l2tR!,Vc ,

I s~Tmin2l2tR!,0.

Iteration:
IncreaseG4 until the condition is met.
We need one more condition for a lower limit ofG4 if we

want to extend the network for recognizing sequences w
repeated inputs from the same source, for example 1234
in which input 3 is fed to both N3 and N6. In this case, wh
N3 spikes because it is in the up state and the input is 3,
gets the excitatory input as well~this is not possible if all
excitatory neurons get spikes from different input source!.
But N6 should return to the down state. This can only
done with the feedback inhibition since the spiking of N
blocks the delayed feedforward inhibition. We will not di
cuss this case in detail.

The procedures II, IV, V, VI, and VII give the lower limi
of G3 andG4 given G1 andG2. There are also upper limits
of G3 andG4. The upper limits come from the requireme
that the excitatory neurons can transit from the down stat
the up state; furthermore, the neuron can spike from the
state if it receives a spike input. There is also an upper li
for the time intervals between the input spikes, since a n
ron cannot stay in the up state indefinitely due to the dec
ing of the membrane potential and the synaptic conducta
Large inhibitory conductance tends to have adversary eff
on this requirement, since the residuals of the inhibition c
ductance can be too large for the excitation to overcome.
most demanding condition for an excitatory neuron to go
the up state is when it is in the most hyperpolarized do
state. Here the membrane potential is at the most poss
negative value, which is the reversal potential of the inhi
tion. The maximum possible inhibitory residuals can also
calculated from the case of repeated feedforward inhibit
or feedback inhibition with minimal time intervals of th
input spikes. From this most hyperpolarized state, we ca
late the effect of the lateral excitation and feedback inhi
tion and make sure that the neuron is in the up state. We
check if a feedforward excitation coming with input interv
T can cause the neuron to spike. This procedure enables
get upper limits of the feedforward inhibition, the feedba
inhibition, and the time intervals of the spike inputs.

Procedure VIII : calculate upper limits ofG3 ,G4 ,T.
Initial conditions:

V5EI ,

gE50,
5-12



er
s
f

pro-

ed

SPIKING NEURAL NETWORK FOR RECOGNIZING . . . PHYSICAL REVIEW E69, 021905 ~2004!
gI5
max~G3 ,G4!e2(Tmin2D2)/t I

12e2Tmin /t I
.

Integration:
Step 1:gE→gE1G2. Time: t15(0,d2).
Step 2:gI→gI1G4. Time: t25(0,T2d1).
Step 3:gE→gE1G1. Time: t35(0,D1).
Condition:
max@V(t3)#.Q, i.e., the neuron spikes during step 3.
d.

D

-

ng

.P

02190
Iteration:
DecreaseG3 ,G4, and/or increaseT

until the condition is met.
For given G1 and G2, this procedure may produce upp
limits of G3 or G4 that are not larger than the lower limit
produced in the previous procedures, or the upper limit oT
that is not larger thanTmin . This means that we failed to find
that the parameter regime for the network to operate as
posed. We need to select newG1 and G2, and start over,
until we find the parameters satisfy all the limits requir
from the procedures.
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