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Characteristics of Two-Dimensional Turbulence That Self-Organizes into Vortex Crystals
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Experiments have found that freely relaxing turbulence in inviscid, incompressible two-dimensional
Euler flows can self-organize into ordered structures—vortex crystals—in which a number Nc � 2 20
of strong vortices form stable, rigidly rotating patterns in a low vorticity background. In this paper we
show that Nc can be roughly predicted from properties of the flows in the early stage of the turbulent
relaxation.

PACS numbers: 47.27.– i, 05.65.+b, 47.32.Cc
Turbulence in inviscid, incompressible, two-
dimensional (2D) fluids is applicable to large scale
geophysical and astrophysical flows. These fluids
evolve according to the 2D Euler equations: ≠tv 1

v ? =v � 0, v � ẑ ? = 3 v , where v�r, t� and v�r, t�
are the velocity and vorticity fields of the flow, respec-
tively, and ẑ is the unit vector perpendicular to the plane
of the flow. The velocity and the vorticity are related via
the stream function c�r, t�: v � = 3 c ẑ, =2c � 2v.

Over the years, numerical simulations and experiments
have found that, from a wide variety of unstable initial con-
ditions, 2D Euler flows quickly organize into large num-
bers of strong vortices (intense patches of vorticity) and a
filamentary, low vorticity background. Subsequently, the
turbulence is dominated by the chaotic mutual advection
of the strong vortices and mergers of like sign strong vor-
tices. The mergers usually continue until only a single
strong vortex or a pair of opposite signed strong vortices
remains [1,2].

However, experiments have discovered that 2 20 strong
vortices can sometimes remain in the final relaxed state.
The vortices settle down to a rigidly rotating equilibrium
pattern in a low vorticity background. The pattern lasts
about 104 rotations of the flow, until the strong vortices
are dissipated by nonideal effects. This equilibrium state
is called a vortex crystal [3,4].

Experimentally, the formation of the vortex crystals de-
pends on delicate control of the initial vorticity distribution
of the flow. Slight variations of the initial condition can
result in vortex crystals with different numbers of strong
vortices, and from some initial conditions, no vortex crys-
tal forms.

In this paper we show that the formation of vortex crys-
tals and the number Nc of the strong vortices remaining in
them can be roughly predicted from characteristics of the
turbulent flows in their early stages of evolution. We focus
on flows with a single sign of vorticity confined within a
free-slip circular boundary.

Our analysis relies on the following physical picture,
supported by recent vortex-in-cell simulations [5] and ana-
lytic theory [6]. Vortex crystals form because of the
interaction between the strong vortices and the low
vorticity background. While advecting chaotically and
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merging occasionally with each other, the strong vor-
tices ergodically mix the background, causing the fluid
entropy of the coarse-grained background to increase. The
mixing of the background, in return, “cools” the chaotic
motions of the strong vortices and leads to the formation
of vortex crystal states. The physics of cooling is similar
in many respects to that of a marble rolling across the
floor: the marble slows to a stop because the entropy of
the floor is increased, implying an irreversible flow of
energy from the marble to the floor.

This physical picture suggests that two time scales are
important in vortex crystal formation: the average time tm

between merger events, and the time tc required to cool
the chaotic motions of the strong vortices through their
interaction with the background. When tm becomes longer
than tc, the strong vortices cool into a crystal state before
the next merger event can occur and the mergers cease,
leaving Nc vortices in the final state.

We can estimate tm from the observed time evolution
N�t� of the number of the strong vortices in the early stage
of the turbulent evolution. Numerical simulations [1] and
experiments [2] have found that N�t� evolves according to
a power law:

N�t� � N�t0� �t�t0�2j , (1)

where j . 0 is a constant, and t0 is any time chosen from
the range of times where the power law scaling is observed.
Other quantities associated with the strong vortices also
evolve in time according to power laws. For example, the
average circulation per vortex of the strong vortices, Ḡ�t�,
increases in time as

Ḡ�t� � Ḡ�t0� �t�t0�hj , (2)

where h . 0 is a constant.
There are theoretical arguments for the power law be-

havior of N�t� [7]. The punctuated scaling theory, which
is based on a merger model that conserves the total energy
and the maximum vorticity of the strong vortices, suggests
that j � 0.70 0.75, and h � 0.5 [8]. Although the the-
ory is supported by some numerical calculations [9] and
experiments done with a thin stratified layer of electrolyte
[10], experiments that observed vortex crystals [3] have
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shown that these exponents can take different values in dif-
ferent flow evolutions, ranging from 0.2 , j , 0.7 and
0.2 , h , 0.9. In this Letter, we take Eqs. (1) and (2) as
empirical laws, and measure the exponents from experi-
ments and simulations.

The time scale tm between mergers is given by the
time required for the number of the strong vortices to de-
crease by one: DN � 21. Then DN�tm � 21�tm �
dN�t��dt � 2jN�t0� �t�t0�212j�t0, where in the second
step N ¿ 1 was assumed and in the last step Eq. (1) was
used. Therefore,

tm � 21��dN�dt� � t0j21N�t0�21�t�t0�11j . (3)

Equation (3) merely states that the mean time between
mergers increases as the flow evolves, since the number of
strong vortices decreases with time and close encounters
between vortices become less likely.

To estimate the cooling time scale tc, we recall that
mixing of the background increases the fluid entropy of the
coarse-grained background and drives the strong vortices
towards equilibrium patterns. As the background is mixed
and the strong vortices approach equilibrium positions, it
becomes unlikely that a fluctuation will drive the strong
vortices sufficiently close together to merge. Therefore,
we estimate tc as the time scale to mix the background.

Mixing in turbulent fluids is a complex problem. One
simplification is to consider instead the mixing of passive
scalars in a prescribed flow [11]. In our case, we assume
that the strong vortices are the primary mixers of the back-
ground and study the chaotic advection of passive scalars
in the fields of point vortices in order to understand the
mixing of the background.

The velocity of a passive scalar in the flow field of
N point vortices is given by dx�dt � ≠cy�x, y, t��≠y,
dy�dt � 2≠cy�x, y, t��≠x, where cy�x, y, t� is the
stream function due to the point vortices and depends on
time due to the motion of the point vortices. Observe
that cy can be regarded as the Hamiltonian for a particle
in one-dimensional motion, with x�t� and y�t� being the
generalized coordinate and momentum.

If the point vortices form a rigidly rotating equilibrium,
cy is time independent in the rotating frame of the equilib-
rium. Then, the trajectory of the passive scalar is integrable
and nonchaotic, and no mixing occurs. The trajectory can
go around one of the point vortices, or a number of them,
depending on the initial position. The initial positions for
different types of trajectories are separated by separatrices.
If the point vortices oscillate around their equilibrium posi-
tions, trajectories near the separatrices become chaotic. If
the point vortices are completely out of equilibrium, their
own motions are chaotic, and the trajectory of the passive
scalar is also chaotic starting from all initial positions (ex-
cept those very close to or very far from the strong vortices)
[12]. We focus on this latter case here, since chaotic mo-
tion of the point vortices in their mutual fields (neglecting
1444
the effect of the background on their motion) is a reason-
able description of the early stages of the flow.

The trajectory of a passive scalar is chaotic if its
Lyapunov exponent l is positive, nonchaotic other-
wise. The Lyapunov exponent of a trajectory is defined
in terms of the difference dr�t� � r1�t� 2 r2�t� of
two infinitesimally close trajectories, r1�t� and r2�t�:
l � limt!` t21 ln�jdr�t�j�jdr�0�j�. We then identify
the inverse cooling time t21

c with the average Lyapunov
exponent l̄ of a collection of passive scalars, counting
only those passive scalars with positive l.

We can estimate l̄ with dimensional analysis. When
the point vortices have approximately equal circulations
and their motions are chaotic in a region of area A, the
main physical quantities that determine l̄ are the average
circulation Ḡ of the point vortices and the average distance
D �

p
A�N between the nearby point vortices. This im-

plies that

t21
c � l̄ � aḠ�D2 � aGT �A , (4)

where a is a constant, and GT � NḠ is the total circula-
tion of the point vortices.

To check the validity of this dimensional analysis, we
have calculated l̄, with the method proposed in Ref. [13],
in the field of N identical point vortices, each with circula-
tions 4p. The point vortices are randomly placed initially
in a circular region and are allowed to move according
to their mutual interaction. We vary N from 5 to 50 and
the area A of the circular region from 0.22p to 0.82p.
7000 8000 passive scalars are uniformly distributed ini-
tially in a circular region of radius 0.9. The result confirms
Eq. (4), with a � 0.031 (see Fig. 1).

To show that tc as given in Eq. (4) is indeed the time
scale on which the mergers of the strong vortices tend to
stop, we have performed several vortex-in-cell simulations,
an example of which is shown in Fig. 2 [14]. In the simu-
lation, five identical point vortices with total circulation
GT � 0.5 are distributed within a low vorticity background
generated by placing 500 vortices randomly inside a cir-
cular region of radius 0.4. These background vortices all

FIG. 1. Relation between l̄ and GT �A. ta is an arbitrary time
unit. The dashed line, with a slope of 0.031, is the best fit to
the data.
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FIG. 2. A vortex-in-cell simulation with five point vortices in a
random background. The flow evolution is shown at three times.
The minimum distance between the point vortices is also plotted
against time. The arrow in the figure indicates the cooling time
tc as evaluated by Eq. (4), with A � 0.42p.

have a radius of 0.08 and random maximum vorticity. The
total circulation of the flow is 1. On a time scale of order
tc, these background vortices are sheared apart and mixed
by the flow. This is seen in Fig. 2, where we plot the flow
at three times. Cooling of the five point vortices is also
demonstrated by the plot of the minimum distance between
the point vortices. For the flow, tc � 32.43 as evalu-
ated by Eq. (4), with A � 0.42p . This value is indicated
with an arrow in the figure. After t � tc, the lower limit
for the minimum distances steadily increases, indicating a
correspondence between the mixing of the background and
cooling of the chaotic motions of the point vortices.

Other simulations have been run with circulation GT of
the five point vortices varying from 0.01 to 0.9. When
GT ø 0.1 or GT $ 0.9, Eq. (4) does not work. For GT $

0.9, there is not enough background to cool the chaotic
motions of the vortices, and for GT ø 0.1, the fluctua-
tions in the background dominate the flow field. However,
for 0.1 # GT # 0.8, Eq. (4) does appear to describe the
cooling time of the point vortices with a similar accuracy
to the example shown in Fig. 2.

The cooling time tc depends on the total circulation
of the strong vortices, which decreases as the strong vor-
tices merge. From Eqs. (1) and (2), we obtain GT �t� �
N�t0�Ḡ�t0� �t�t0�hj2j . Therefore, from Eq. (4) we obtain

tc �
A

aN�t0�Ḡ�t0�

µ
t
t0

∂j2hj

. (5)

Comparison of Eqs. (3) and (5) shows that tc grows
in time more slowly than tm since h . 0. Therefore,
starting from tm , tc, tm will eventually catch up with
tc at t � t1, and mergers of the strong vortices stop. Here
t1 is found by setting tc � tm, and from Eqs. (3) and
(5) we arrive at t1 � t0�jA�at0Ḡ�t0��
1

11hj . Accordingly,
the number of the strong vortices in the vortex crystals is
obtained by setting t � t1 in Eq. (1):

Nc � N�t0�
µ

at0Ḡ�t0�
jA

∂ j

11hj

. (6)

This equation shows that in order to form vortex crys-
tals with many surviving strong vortices, initially the flow
should have a large number of strong vortices with large
average circulation, concentrated in a small area.

The prediction of Eq. (6) has been compared to both
experiments with pure electron columns [3] and vortex-in-
cell simulations. The exponents j, h, as well as N , Gy ,
and A are measured in the power law regime of the tur-
bulent relaxation. A is determined by measuring the total
area of flow with vorticity level larger than 1�4 of the av-
erage background vorticity. Then each flow in the power
law regime predicts Nc according to Eq. (6).

In the simulations, initial conditions are generated by
randomly distributing in a circular region a large number
of vortices with equal radii and random maximum vortic-
ity. Within one rotation time of the flow, a number of
strong vortices and a low vorticity background form from
this kind of initial distribution. Generally, the number of
strong vortices formed increases with decreasing radius of
the random vortices. In Fig. 3, we show a typical run
of the simulation, starting with roughly 2000 random vor-
tices with radius 0.005. For this small radius, several hun-
dred strong vortices form initially and immediately begin
to merge. The vorticity distributions at three times and
the evolution of the number of the strong vortices are dis-
played. As expected from Eq. (6), a vortex crystal with a
large number of strong vortices forms. Conversely, a simu-
lation that starts with 1000 random vortices with radius

FIG. 3. Vortex-in-cell simulation starting with a random dis-
tribution of vortices with small radii. Images: Vorticity distribu-
tions at three different times. Plot: The evolution of the number
of the strong vortices.
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FIG. 4. Comparison of the predicted number Nc of the strong
vortices in the vortex crystals with the Nc of the experiments and
the simulations. Each data point represents a particular evolution
of the turbulent flow.

0.02 forms only 36 strong vortices initially and results in
only a single strong vortex in the final state, also as ex-
pected from Eq. (6).

In Fig. 4, we plot the predicted Nc from Eq. (6), av-
eraged over the power law region of N�t�, against the
observed Nc for the experiments and simulations. In the
experiments the observed Nc fluctuates because of shot
noise [3]. Therefore, we take the average value of the ob-
served Nc. In the simulations, the number of strong vor-
tices decreases slightly after the power law regime (see
Fig. 3). This is due to the existence of a number of vor-
tices with very small circulation compared to the average
circulation of the strong vortices. These small vortices are
essentially passive tracers and eventually merge into larger
strong vortices. Since these small vortices are not part of
vortex crystals, we take the observed Nc in the simulation
at the final time after most small vortices have disappeared.

Figure 4 shows that the prediction of Eq. (6) clearly
distinguishes the characteristics of flows that form vortex
crystals with many strong vortices from those of flows that
form no vortex crystals. However, the scatter in the data is
quite large. This might be expected, given that the process
of vortex crystal formation is chaotic.

Until now, vortex crystals have been observed only in
turbulent flows with a single sign of vorticity, subject to
a circular, free-slip boundary condition. It is of interest
to determine whether vortex crystals can form in more
general cases with both signs of vorticity and/or different
boundary conditions. As we have shown in this paper, one
requirement is that there should be many strong vortices
in the initial stages of the turbulent flow. Our theory also
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suggests that two conditions are crucial for vortex crys-
tal formation. First, calculations similar to those we have
done in Ref. [6] should be carried out for more general
flows to reveal whether ordered, stable structures for the
strong vortices can emerge by maximization of the fluid
entropy of the low vorticity background. The second con-
dition is that the mixing time scale tc of the background
must be sufficiently fast. This can be investigated by con-
sidering the chaotic advection of point vortices, as we have
done in this paper. It is conceivable that tc can vary con-
siderably depending on the characteristics of the turbulent
flow. For example, if there are approximately equal num-
bers of similar-sized positive and negative strong vortices,
the mixing of the background may not be as efficient as
the case we have studied in this paper, since the opposite
signed strong vortices tend to form dipole pairs and hence
at least partially cancel each other’s mixing ability.
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