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Fast Convergence of Spike Sequences to Periodic Patterns in Recurrent Networks
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The dynamical attractors are thought to underlie many biological functions of recurrent neural
networks. Here we show that stable periodic spike sequences with precise timings are the attractors of
the spiking dynamics of recurrent neural networks with global inhibition. Almost all spike sequences
converge within a finite number of transient spikes to these attractors. The convergence is fast,
especially when the global inhibition is strong. These results support the possibility that precise
spatiotemporal sequences of spikes are useful for information encoding and processing in biological
neural networks.
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been studied previously [6–8], but most of these studies spiking neural networks with a small numbers of neurons
The dynamics of recurrent neural networks are thought
to underlie many computations done in the brain’s neural
networks. Previously, rate based models of neural activity
have shown that dynamics of recurrent networks can
converge to attractors in the spiking rates [1]. This finding
has led to many proposals on the way brain functions
might be implemented with recurrent neural networks
[1,2]. However, neurons interact through individual
spikes, not through averaged spiking rates as assumed in
the rate models. In this Letter we show that, with impor-
tant modifications, the notion of attractors can be ex-
tended to more biologically realistic network models
with neurons interacting through individual spikes.
Here, instead of the spiking rate patterns, precise spike
sequences are the attractors. Our results support the pos-
sibility that precise spatiotemporal sequences of spikes
are useful for information encoding and processing in the
brain [3]. Our work also provides a possible mechanism
for generating precise spike sequences in groups of neu-
rons, which have been observed in recent experiments on
olfactory systems of insects [4] and song-related pre-
motor areas of songbirds [5].

We analyze the dynamics of recurrent networks con-
sisting of pulse-coupled leaky integrate-and-fire neurons
driven by constant external inputs. In particular, we study
a class of networks whose recurrent connections are
dominated by global inhibition. The structures of the
networks we study are general: The number of neurons,
the distribution of the external inputs, and the network
connectivity are all arbitrary; in addition, each neuron
can have different spike threshold, resting membrane
potential, and reset potential. We demonstrate that the
spike sequences in these networks converge to stable
periodic patterns with precise spike timings from almost
all initial states of the neurons. Moreover, the conver-
gence is rapid: The number of transient spikes preceding
the periodic spike sequences is finite, and is small espe-
cially when the global inhibition is strong.

Spiking dynamics of recurrent neural networks have
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have focused on networks with simple structures charac-
terized by simple connectivity, identical (or nearly iden-
tical) neurons, or uniform (or nearly uniform) external
inputs. In some work, the number of neurons is limited to
a few. The networks we study have more general struc-
tures and, therefore, are more biologically relevant.

The model.—The dynamics of our networks is de-
scribed by the following equation:

�
dVj
dt

� Lj � Ij � Vj

�
XN

i�1

X1

k�1

�GE
j;iVj �GI

j;i�Vj � EI�����t� t�k�i �;

(1)

where � is the membrane time constant; N is the number
of neurons; Vj�t�; Lj; Ij are the membrane potential, the
resting membrane potential, and the external input of
the jth neuron, respectively; GE

j;i 	 0 and GI
j;i > 0 are

the conductances of the excitatory and inhibitory syn-
apses from neuron i to j (if there is no excitatory con-
nection, GE

j;i � 0; the conductances are scaled with the
leak conductance of the neuron); EI is the reversal poten-
tial of the inhibitory synapse (the reversal potential of the
excitatory synapse is set to 0 mV); and finally, t�k�i is the
time of the kth spike of neuron i. When Vj reaches a
threshold potential �j < 0, neuron j spikes, and Vj is
reset to the reset potential Rj. The following relation
holds:max�EI; Rj; Lj�<�j. All neurons get suprathresh-
old inputs; i.e., Ij > �j � Lj 
 Cj, where Cj is the
threshold current. In our networks, the global inhibition
dominates. In other words, for any pair of neurons, a
spike in one will not cause an immediate spike in the
other. This requires that GI

j;i must be larger than a lower
limit set by GE

j;i (the exact relation is given later in the
Letter).

Basic idea.—To solve the spiking dynamics of the net-
works, we derive a nonlinear map. Nonlinear maps have
been used previously for analyzing phase-locked states in
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(typically two) or uniform connections, with each neuron
spiking with the same or slightly different frequencies
[6]. Here we derive a novel map that is suitable for ana-
lyzing much more general situations with �-pulse synap-
tic coupling. The derivation relies on two insights. First,
the dynamics of our network is completely determined if
the membrane potentials of all neurons are given at one
point in time. Second, the dominance of the global in-
hibition over excitation guarantees that simultaneous
spiking of multiple neurons is forbidden. With these two
insights, we discretize the dynamics of the network into a
mapping of the membrane potentials of all neurons right
after one spike transmission to those right after the next
spike transmission [9]. This mapping of the membrane
potentials can be translated to that of pseudo spike times
(PST’s), which are linearly related to the membrane po-
tentials and are related to the times it would have taken
each neuron to spike if it were not interacting with the
other neurons. The resulting pseudo-spike-time map
(PSTM) is the basis for our analysis of the spiking dy-
namics of our networks.

In a network driven by a set of external inputs, different
initial states of the neurons can lead to different spike
sequences. A key property of the PSTM is that it is a
contracting map: The PST’s of the PSTM’s that generate a
common segment of a spike sequence converge to a
common set of values. The convergence is exponentially
fast with the length of the common segment. With this
convergence property, we find a criterion for stable spike
sequences, which are defined as those that do not change
under small but finite perturbations of the membrane
potentials at any time. We further prove with the conver-
gence property that all stable sequences end up in peri-
odic patterns. Intuitively, the PSTM is a contracting map
for three reasons. First, in between spikes, the membrane
potentials of the neurons converge from any initial states
to the values determined by the external inputs. Second,
right after a neuron spiked, its membrane potential is
reset to a fixed value. Finally, at each spike, the membrane
potentials of all neurons jump towards the effective re-
versal potentials set by the inhibitory and excitatory
conductances of the synapses from the neuron that spiked
(see the next section).

The PSTM.—Between two consecutive spikes in the
network, neurons do not interact. Let t � 0� be the time
right after the transmission of the nth spike in the net-
work, let p label the neuron that spiked, and let the
membrane potential of neuron j at this time be V�n��

j;p .
Integrating Eq. (1), we find that it will take neuron j a
time T�n�

j;p � � log��n�j;p to reach the spike threshold. Here,
��n�j;p is the pseudo spike time of neuron j relative to the nth
spike of the network and is defined as

��n�j;p 
 1� ��j � V�n��
j;p �=�Ij � Cj�: (2)

The neuron that will spike next has the smallest PST;
therefore, its label q is found according to
208102-2
q � arg� min
j�1;...;N

��n�j;p�: (3)

With the neuron that spikes next identified, we can cal-
culate the membrane potentials V�n�1�

j;q of all neurons right
before the �n� 1�th spike transmission. This is done by
integrating Eq. (1) until time T 
 T�n�

q;p. Because of the
reset, we have V�n�1�

q;q � Rq.
We now calculate the effects of the �n� 1�th spike to

find out the membrane potentials right after the trans-
mission of this spike. Integrating Eq. (1) over the spike at
t � T, we find

V�n�1��
j;q � V�n�1�

j;q � ��j;q�V
�n�1�
j;q � �j;qEI�; (4)

where �j;q 
 1� exp��GE
j;q �GI

j;q� and �j;q 

GI
j;q=�G

I
j;q �GE

j;q� are constants. We require that neuron
j will not spike immediately because of the spike trans-
mission; this leads to the condition �j;qEI <�j. With
this condition, the net effect of inhibitory and excitatory
inputs is an inhibitory input with an effective reversal
potential �j;qEI.

With Eq. (4), we can relate V�n�1��
j;q to V�n�1�

j;q . We can
further relate V�n�1�

j;q to V�n��
j;p by integrating Eq. (1) from

t � 0� to T. Therefore, a mapping from fV�n��
j;p g to

fV�n�1��
j;q g can be found. Since the PST’s are linearly

related to the membrane potentials, we can also derive
the mapping from f��n�j;pg to f��n�1�j;q g, and the results are

��n�1�j;q �  j;q � "j;q�
�n�
j;p=�

�n�
q;p: (5)

Here "j;q and  j;q are constants and are given by "j;q 

1� �j;q; and  j;q 
 �j;q�1� ��j � �j;qEI�=�Ij � Cj��
for j � q and  q;q 
 �q;q � ��q � "q;qRq �
�q;q�q;qEI�=�Iq � Cq�.

Equations (3) and (5) complete the pseudo-spike-time
map: Once the PST’s of all neurons after one spike are
known, the neuron that will spike next can be determined
with Eq. (3); then, with Eq. (5), the PST’s of all neurons
after the next spike can be calculated. Iterating the PSTM
gives the spiking dynamics of the network.

Convergence theorems.—Driven by a set of external
inputs, a network can generate different spike sequences
because of different initial membrane potentials of the
neurons. We consider the convergence properties of these
sequences. Central to our analysis is the following lemma:

Lemma: Consider two PSTM’s that generate the same
spike sequence �s1; . . . ; sP� of length P. Here sn is the
neuron label of the nth spike of the network. Denoting the
PST’s of one PSTM as ��n�j;sn and those of the other as��n�

j;sn
,

we find

max
j

�j��n�j;sn ��
�n�
j;sn

j� < �n�12Dmax
j

�j��1�j;s1 ��
�1�
j;s1

j�

< �n�12D2
(6)

for n � 2; . . . ; P. Here, D � 1 � maxjf��j �
min�Lj; Rj; EI��=�Ij � Cj�g, and

� � De�Gmin=� min �De�Gmin �< 1; (7)
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FIG. 1. (a) The network. In the simulation, N � 1000 [only
20 are shown (grey circles)]. The connections are randomly
chosen: GI

i;j from the range �0:4; 0:6� (grey lines), and GE
i;j from

�0; 0:05� [only those with GE
i;j > 0:005 are shown (black lines)].

(b) Spike raster plot for a typical run. Parameters: Lj �
�70 mV, �j � �54 mV, Rj � �64 mV, � � 40 msec, and
EI � �75 mV. Ij � Lj are randomly sampled from 0 to
100 mV. Initial membrane potentials are randomly selected
from ��70;�54� mV. Only neurons that spiked at least once
are shown (31 neurons). The periodic spike patterns are shaded
with alternating grey areas.
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where Gmin � minj;q�G
I
j;q �GE

j;q�,  min � minj;q� j;q�.
Quantity D is an upper limit of the PST and is obtained
from Eq. (2) and the fact that min�Lj; Rj; EI� � V�n��

j;q .
The proof of the Lemma is in the Appendix.

With the Lemma, we consider a class of spike sequen-
ces generated by the PSTM’s with finite margins. The
margin � of a PSTM that generates a spike sequence
�s1; s2; . . .� is defined as

� � min
n�1;...;1

min
j�sn�1

���n�j;sn � �
�n�
sn�1;sn�: (8)

Here ��n�j;sn are the PST’s. At a spike, the neuron that will
spike next has the smallest PST; the margin measures how
much smaller this PST is compared to those of the other
neurons. We prove three theorems.

Theorem I: A spike sequence generated by a PSTM
with nonzero margin � is stable: If perturbations of the
membrane potentials of the neurons leave the PST’s
within a range �=4D from the unperturbed values, the
spike sequence does not change; moreover, the timings of
the spikes return to unperturbed values exponentially fast
with the number of spikes after the perturbations.

Proof: Let S � �s1; s2; . . .� be the unperturbed spike
sequence, and let �j;sn be the underlying PST’s. Let S0 �
�s01; s

0
2; . . .� be the spike sequence generated by the per-

turbed dynamics, and let ��n�
j;s0n

be the underlying PST’s.
Without losing generality, we can assume that the pertur-
bations are applied after the first spike of the network, so
that s01 � s1. With the Lemma, we prove the theorem
recursively. Suppose that the perturbations are such that
j��1�j;s1 ��

�1�
j;s1

j< �=4D<�=2 Together with Eq. (8), this
relation implies ��1�

s2;s1 <�
�1�
j;s1

for all j � s2. Therefore,
the next neuron to spike in the perturbed dynamics is
neuron s2, i.e., s02 � s2. Now suppose s0k � sk for all k �
1; . . . ; P. Applying the Lemma, we find j��P�j;sP

���P�
j;sP

j<
�P�12D�=4D< �=2. This relation and Eq. (8) again
imply that ��P�

sP�1;sP <�
�P�
j;sP

for all j � sP�1. Therefore,
s0P�1 � sP�1. This proves that S0 � S. The returning of
the spike timings to unperturbed values follows directly
from the Lemma.

Theorem II: Consider two stable spike sequences
S1 � �. . . ; i1; . . . ; iP; iP�1; . . .� and S2 � �. . . ; j1; . . . ; jP;
jP�1; . . .�. Suppose that two subsequences of length P
from S1 and S2 are identical, i.e., in � jn for n �
1; . . . ; P. Then S1 and S2 will be identical for all n > P
if P 	 P�, where

P� � log��=8D3�= log��� � 1: (9)

Proof: Denote the PSTof neuron j at the nth spike in S1
as ��n�j;in , and that in S2 as��n�

j;jn
. Using the Lemma, we find

j��P�j;P ��
�P�
j;Pj< �P

��12D2 � �=4D. Then, applying
Theorem I, we find that ik � jk for all k > P.

Theorem III: All stable spike sequences will end up in
periodic spiking patterns. Moreover, the numbers of tran-
sient spikes before settling down to the periodic patterns
are finite and are at most NP�

� P� � 1.
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Proof: Theorem II implies that a stable spike sequence
will be trapped in a periodic spike pattern as soon as a
subsequence of length P� appears twice in the sequence.
Any sequence of length NP�

� P� contains at least two
copies of a subsequence of length P�.

Discussion—Almost all spike sequences in our net-
works are stable. Unstable sequences can be generated
with PSTM’s with the margins equal to 0. Such a situ-
ation can arise only from a set of restricted initial states
of the neurons.

The upper limit of the number of transient spikes given
in Theorem III is not a least upper bound. This is mainly
because many neurons with small external inputs will
never spike after the first spike of the network—they are
suppressed by the spiking neurons. A similar process has
been analyzed for the winner-take-all computation in a
spiking network [10]. Therefore, the number of neurons
that can participate in the spiking dynamics is typically
much smaller than N. To illustrate this point, we per-
formed simulations of random recurrent networks with
global inhibition by numerically iterating the PSTM. A
typical example is shown in Fig. 1. As can be seen in the
figure, only a fraction of neurons spike when the network
is driven with random external inputs. Moreover, the
number of transient spikes is small. In general, the num-
ber of transient spikes is small if the global inhibition is
strong. This follows from Eqs. (7) and (9).

Conclusion.—To conclude, we find that the spiking
dynamics of the recurrent networks with global inhibi-
tion are attracted to stable periodic patterns with exact
spike timings. The spike sequences of the network end up
in periodic patterns in a finite number of transient spikes.
When the inhibition is strong, the number of transient
spikes is small. In future work, it will be important to
elucidate the effects of finite time synaptic dynamics,
208102-3
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spike transmission delays, interneurons, different neuron
models, nonconstant external inputs, and noise.
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Appendix.—Here we outline the derivation of Eq. (6).
For n � 1; . . . ; P, define N � 1 vectors X�n� and W�n� ,
whose jth elements are defined as X�n�

j 
 ���n�j;sn �
��n�
j;sn

�=��n�
j;sn

andW�n�
j 
 ���n�

j;sn
� ��n�j;sn�=�

�n�
j;sn

, respectively.
Using Eq. (5), we obtain the following iteration relations
for the X’s and W’s:

X�n� � rn�1��n�1�X�n�1�; W�n� � r�1n�1 
�n�1�W�n�1�:

(10)

Here rn�1 
 �
�n�1�
sn;sn�1=�

�n�1�
sn;sn�1 ; �

�n�1� and ��n�1� are N �
N matrices with their entries defined as ��n�1�

i;j �

��n�1�
i �1� �i;sn���i;j � �j;sn� and  �n�1�

i;j �  �n�1�
i �1�

�i;sn���i;j � �j;sn�, where ��n�1�
i 
 1�  i;sn=�

�n�
i;sn

and

 �n�1�
i 
 1�  i;sn=�

�n�
i;sn

. Here �i;j � 1 if i � j and 0

otherwise. Equation (5) gives ��n�
j;sn

<  j;sn � "j;sn�
�n�1�
j;sn�1

since ��n�1�
sn;sn�1 > 1. This leads to ��n�1�

i <
"j;sn�

�n�1�
j;sn�1

=� j;sn � "j;sn�
�n�1�
j;sn�1

� � �, with � defined in

Eq. (7). Similarly, ��n�1�
i < �. Iterating Eq. (10) for m �

n; . . . ; 2, we obtain X�n� � 'n�1P
�n�1�X�1�, where 'n�1 


rn�1 � � � r2r1 and P �n�1� 
 ��n�1� � � ���2���1�. Therefore,
jX�n�j1 � 'n�1jjP �n�1�jj1jX�1�j1. Here j � j1 is the vector
norm and is defined as the maximum of the absolute
values of the vector components, and jj � jj1 is the
matrix norm and is obtained by summing the absolute
values of the matrix entries in each row and picking
the maximum of these sums. Similarly, we obtain
jW�n�j1 � '�1

n�1jjQ
�n�1�jj1jW�1�j1, where Q�n�1� 


 �n�1� � � � �2� �1�. Multiplying the preceding two in-
equalities leads to

jX�n�j1jW�n�j1 � jjP �n�1�jj1jjQ
�n�1�jj1jX�1�j1jW�1�j1:

(11)

To evaluate the upper limit of f 
 jjP �n�1�jj1, we ob-
serve that f can be regarded as a collinear function of
�n� 1�N independent variables ��m�

i , where i � 1; . . . ; N
and m � 1; . . . ; n� 1 (in other words, f depends linearly
on each ��m�

i ). These variables are bounded: 0<
��m�
i < �. Since the maximum of a collinear function is

achieved at one of the vertices of the hypercube that
confines the independent variables, the maximum of f
is achieved at one of the 2�n�1�N possible combinations of
setting each ��m�

i at either 0 or �. Therefore,

jjP �n�1�jj1 < �n�1 max
k�1;...;2�n�1�N

�jjL�n�1;k�jj1�: (12)
208102-4
Here, L�n�1;k� � !�n�1;k� � � �!�2;k�!�1;k�, and !�m;k� is a
N � N matrix with the entries defined as !�m;k�

i;j �
)�m;k�
i �1� �i;sm�1���i;j � �j;sm�1�, where )�m;k�

i is either 0
or 1. Note that matrix !�m;k� has the same shape as the
matrix��m�, except that its entries take values of 0; 1;�1.
Also, all !�m;k� are elements of a set M of matrices. An
element in this set is a N � N matrix with the following
characteristics: All entries are zero except that (a) entries
in one column, say, the mth column, can be �1; (b) one
entry is 1 in the row with its mth column equal to �1.
Obviously, the norm of all matrices in set M is 2 except
that of the matrix with all its elements equal to zero. It is
easy to show that products of matrices in set M still
belong to M. Therefore, L�n�1;k� belongs to M, and
jjL�n�1;k�jj1 � 2, except for the special case L�n�1;k� �
0, whose norm is 0. From this and Eq. (12), we obtain
jjP �n�1�jj1 < 2�

n�1: With similar reasoning, we get
jjQ�n�1�jj1 < 2�

n�1. From these two relations, Eq. (11),
the relation maxj�j�

�n�
j;sn

���n�
j;sn

j2=D2� � jX�n�j1jW�n�j1,

and the relation jX�1�j1jW
�1�j1 <maxj�j�

�1�
j;s1

���1�
j;s1

j2�,
we obtain Eq. (6).
*Electronic address: djin@mit.edu
[1] M. A. Cohen and S. Grossberg, IEEE Trans. Syst. Man

Cybern. 13, 815 (1983); J. J. Hopfield, Proc. Natl. Acad.
Sci. U.S.A. 81, 3088 (1984).

[2] H. S. Seung, Proc. Natl. Acad. Sci. U.S.A. 93, 13 339
(1996); K. Zhang, J. Neurosci. 16, 2112 (1996).

[3] G. Laurent, Science 286, 723 (1999).
[4] M. Stopfer and G. Laurent, Nature (London) 402, 664

(1999).
[5] R. H. R. Hahnloser, A. A. Kozhevnikov, and M. S. Fee,

Nature (London) 419, 65 (2002).
[6] R. E. Mirollo and S. H. Strogatz, SIAM J. Appl. Math. 50,

1645 (1990); D. Hansel, G. Mato, and C. Meunier, Neural
Comput. 7, 307 (1995); W. Gerstner, Phys. Rev. E 51, 738
(1995).

[7] M. Tsodyks, I. Mitkov, and H. Sompolinsky, Phys. Rev.
Lett. 71, 1280 (1993).

[8] S. Bottani, Phys. Rev. Lett. 74, 4189 (1995); A.V. M. Herz
and J. J. Hopfield, Phys. Rev. Lett. 75, 1222 (1995); J. J.
Hopfield and A.V. M. Herz, Proc. Natl. Acad. Sci. U.S.A.
92, 6655 (1995); W. Gerstner, Phys. Rev. Lett. 76, 1755
(1996); C. van Vreeswijk, Phys. Rev. E 54, 5522 (1996);
C. C. Chow, Physica (Amsterdam) 118D, 343 (1998);
G. B. Ermentrout and N. Kopell, Proc. Natl. Acad. Sci.
U.S.A. 95, 1259 (1998); P. C. Bressloff and S. Coombes,
Neural Comput. 12, 91 (2000); D. Golomb and D. Hansel,
Neural Comput. 12, 1095 (2000).

[9] A similar idea was used in [7] for numerically simulat-
ing networks of leaky integrate-and-fire neurons.

[10] D. Z. Jin and H. S. Seung, Phys. Rev. E 65, 051922 (2002).
208102-4


